Skip to main content
Log in

Investigation in band structures of GaAs/Al x Ga1−x As nanostructures superlattices at high magnetic field and low temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated in the band structures E(d 1), E(k z , k p ) and the effective mass m*/m 0, respectively, along the growth axis and in the plane of GaAs (d 1 = 19 nm)/Al0.3Ga0.7As (d 2 = 5 nm) superlattice, performed in the envelope function formalism. Our results show the effect of the well thickness d 1 and the temperature on the electronic structures of this superlattice. The latter has a direct band gap of 1.529 eV, and the corresponding cutoff wavelength indicates that it can be used as a near-infrared detector. The position of Fermi level, based on the magnetoresistance measurements of Smrčka et al. and Fermi–Dirac integral computation at 0.4 K, predicts that this sample exhibits n-type conductivity with a two-dimensional electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Andreev, Polymers Phosphors, and Voltaics for Radioisotope Microbatteries (CRC Press, Boca Raton, 2002), pp. 289–363

    Google Scholar 

  2. M. Wilde, Magnetization Measurements on Low-dimensional Electron Systems High-Mobility GaAs SiGe Heterostructures (Cuvillier Verlag, Göttingen, 2005), pp. 34–40

    Google Scholar 

  3. E. Bründermann, H.-W. Hübers, M.F. Kimmitt, Terahertz techniques (Springer, Berlin, 2012)

    Book  Google Scholar 

  4. D. G. Paveliev, Y. I. Koschurinov, V. M. Ustinov, and A. E. Zhukov, in 19th International Symposium on Space Terahertz Technology Groningen, 2830 April 2008 (Groningen, The Netherlands, 2008), pp. 319–328

  5. J.R. Cárdenas, R. Ferreira, G. Bastard, Superlattices Microstruct. 87, 97–102 (2015)

    Article  ADS  Google Scholar 

  6. K.M.S.V. Bandara, J.-W. Choe, M.H. Francombe, A.G.U. Perera, Y.F. Lin, Appl. Phys. Lett. 60, 3022 (1992)

    Article  ADS  Google Scholar 

  7. S.N. Data, U. III-V, and I.-V. Compounds, New Data and Updates for III-V, II-VI and I-VII Compounds (Springer, Berlin, 2010)

  8. L. Pavesi, M. Guzzi, J. Appl. Phys. 75, 4779 (1994)

    Article  ADS  Google Scholar 

  9. B. Fluegel, K. Alberi, J. Reno, A. Mascarenhas, Jpn. J. Appl. Phys. 54, 042402 (2015)

    Article  ADS  Google Scholar 

  10. V.G. Litovchenko, D.V. Korbutyak, A.I. Bercha, Y.V. Kryuchenko, S.G. Krylyuk, H.T. Grahn, R. Hey, K.H. Ploog, Appl. Phys. Lett. 78, 4085 (2001)

    Article  ADS  Google Scholar 

  11. R. Cingolani, M. Holtz, R. Muralidharan, K. Ploog, K. Reimann, K. Syassen, Surf. Sci. 228, 217 (1990)

    Article  ADS  Google Scholar 

  12. G. Bastard, Phys. Rev. B 25, 7584 (1982)

    Article  ADS  Google Scholar 

  13. D. Barkissy, A. Nafidi, A. Boutramine, H. Charifi, A. Elanique, M. Massaq, J. Low Temp. Phys. 182, 185 (2016)

    Article  ADS  Google Scholar 

  14. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  15. M. A. Herman, W. Richter, and H. Sitter, in Group IV Elopements IVIV IIIV Compounds Part BElectronic Transport, Optical and Other Properties (Springer, Berlin, 2004), pp. 1–15

  16. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  17. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Paris, 1988), p. 49

    Google Scholar 

  18. S.Z. Karazhanov, Semiconductors 39, 161 (2005)

    Article  ADS  Google Scholar 

  19. O. Madelung, U. Rössler, M. Schulz (eds.), Group IV Elements IVIV IIIV Compounds Part BElectronic Transport, Optical and Other Properties SE-553 (Springer, Berlin, 2002), pp. 1–11

  20. Y. Wang, F. Zahid, Y. Zhu, L. Liu, J. Wang, H. Guo, Appl. Phys. Lett. 102, 132109 (2013)

    Article  ADS  Google Scholar 

  21. R. Kim and M. Lundstrom, arXiv:0811.0116 (2008)

  22. E.F. Schubert, Doping in III–V Semiconductors (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  23. S.V. Gaponenko, Optical Properties Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998), pp. 27–54

    Book  Google Scholar 

  24. H. Ünlü, Solid State Electron. 35, 1343 (1992)

    Article  ADS  Google Scholar 

  25. L. Smrčka, N.A. Goncharuk, P. Svoboda, P. Vašek, Y. Krupko, W. Wegscheider, Microelectron. J. 39, 411 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Nafidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkissy, D., Nafidi, A., Boutramine, A. et al. Investigation in band structures of GaAs/Al x Ga1−x As nanostructures superlattices at high magnetic field and low temperatures. Appl. Phys. A 123, 61 (2017). https://doi.org/10.1007/s00339-016-0688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0688-1

Keywords

Navigation