Skip to main content
Log in

Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

  • Invited papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in Roman-Egyptian paintings as “encaustic” and in form of emulsion (modified wax), can be detected and, based on the shape of the peaks, these two ways of applying the wax can be distinguished from one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Chiari, Nature 453, 159 (2008)

    Article  ADS  Google Scholar 

  2. G. Chiari, P. Sarrazin, M. Gailhanou. Powder Diffr. 23(2) (2007)

  3. P. Sarrazin, G. Chiari, M. Gailhanou, Adv. X-Ray Anal. 52, 175–186 (2008)

    Google Scholar 

  4. D.C. Stulik, Preprints of the ICOM 14th Triennial Meeting, The Hague, (James & James, London, 2005), pp. 556–64

  5. J. Dik. AAAS Annual Meeting. Chicago: 13–17 February (2014)

  6. B. Scruggd, M. Haschke, L. Herczeg, J. Nicolosi. Denver X-ray conference (DXC) on applications of X-ray analysis. Adv X-ray Anal. 42 (2015)

  7. L. Luhl, I. Schauman, C. Vogt, B. Kanngießer, Anal. Chem. 85(7), 3682–3689 (2013)

    Article  Google Scholar 

  8. I. Nakay, Y. Abe, Appl. Phys. A 106, 279–293 (2012)

    Article  ADS  Google Scholar 

  9. M. Uda, S. Yoshimura, A. Ishizaki, D.Y. Yamashita, Sakuraba. Int. J. PIXE 17(65) (2007)

  10. Y. Abe, I. Nakai, K. Takahashi, N. Kawai, S. Yoshimura. Anal. Bioanal. Chem. 395 (2010)

  11. L. Pappalardo, G. Pappalardo, F. Amorini, M.G. Branciforti, F.P. Romano, J. De Sanoit, F. Rizzo, E. Scafiri, A. Taormina, G. Gatto Rotondo, X-Ray Spectrom. 37, 270 (2008)

    Google Scholar 

  12. J. Gianoncelli, L. Castaing, E. Ortega, J. Dooryhee, P. Salomon, J.L. Walter, P. Hodeau, Bordet. X-Ray Spectrom. 37(4), 418–423 (2008)

    Article  Google Scholar 

  13. M. Eveno, B. Moignard, J. Castaign, Microsc. Microanal. 17(5), 667–673 (2011)

    Article  ADS  Google Scholar 

  14. D.L. Bish, D.F. Blake, D.T. Vaniman, S.J. Chipera, R.V. Morris, D.W. Ming, A.H. Treiman, P. Sarrazin, S.M. Morrison, R.T. Downs, C.N. Achilles, A.S. Yen, T.F. Bristow, J.A. Crisp, J.M. Morookian, J.D. Farmer, E.B. Rampe, E.M. Stolper, N. Spanovic, Science 341, 1238932 (2013)

    Article  Google Scholar 

  15. D. Blake, D.L. Bish, D.T. Vaniman, S.J. Chipera, R.V. Morris, D.W. Ming, A.H. Treiman, P. Sarrazin, S.M. Morrison, R.T. Downs, C.N. Achilles, A.S. Yen, T.F. Bristow, J.A. Crisp, J.M. Morookian, J.D. Farmer, E.B. Rampe, E.M. Stolper, N. Spanovic, Science 341, 1239505 (2013)

    Article  Google Scholar 

  16. P. Sarrazin, W.M. Brunner, D.F. Blake, R. Peterson. 39 LPSC No 1391, 2412, (2007)

  17. PDF-2–International Center for Diffraction data

  18. AMCSD—American Mineralogist Crystal Structure Database—Powder Diffraction

  19. PSRemote—Breeze System INC

  20. G. Silvester, A. Burnstock, L. Megens, T. Learner, G. Chiari, K.J. van den Berg, Stud. Conserv. 59(1), 38–51 (2014)

    Article  Google Scholar 

  21. F.D. Bloss, Introduction methods optical crystallography (Holt, Rinehart and Winston, New York, 1961)

    Google Scholar 

  22. J. Plesters, Mus. J. 54(4), 97 (1954)

    Google Scholar 

  23. J. Plesters, Stud. Conserv. 2(3), 110–157 (1956)

    Google Scholar 

  24. M.R. Derrick, D. Stulik, J.M. Landry, Infrared Spectroscopy in Conservation Science (Getty Conservation Institute, Los Angeles, 1999), pp. 33–42

    Google Scholar 

  25. McCrone Research Institute. 2820 South Michigan Ave, Chicago IL 60616. URL:http://www.geochemsoc.org/publications/geochemicalnews/gn144sept10/ahistoricalperspectiveofth.htm

  26. K. Jannsen, in Comprehensive Analytical Chemistry Series, ed. By K. Janssen, R. Van Grieken (Elsevire, Amsterdam, 2004), vol 42

  27. G. Chiari, M.L. Santarelli, G. Torraca, Materiali e Strutture, problemi di conservazione. Anno II 3, 111–137 (1992)

    Google Scholar 

  28. G. Chiari, R. Cossio. I Silicati Nella Conservazione (Villa Gualino, Torino, 2002), pp. 147–156

  29. G. Chiari, R. Cossio, in Biodeterioration of Stone Surfaces (2004), pp. 99–113

  30. F. Casadio, G. Chiari, S. Simon, Archaeometry. 47(4), 671–689 (2005)

    Article  Google Scholar 

  31. L. Vegard. Zeitschrift für Physik, 5, 17. (1921)

  32. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161–3164 (1991)

    Article  ADS  Google Scholar 

  33. APPEAR–Ancient Panel Paintings: Examination, Analysis and Research. Svoboda M. coordinator. http://www.getty.edu/research/scholars/research_projects/

Download references

Acknowledgements

The authors owe a great debt to the Getty Conservation Institute where most of the experimental work was carried out while the lead author was formerly Chief Scientist. Marie Svoboda of the Antiquity department of the Getty Museum, made possible the study of the Romano-Egyptian portraits, and gave valuable information on the techniques used to make them. We thank Dusan Stulik, Sylvana Bennet and Art Kaplan for providing the samples of silver, gold and beeswax. We thank David Blake at NASA Ames and the collaborators of the CheMin Mars XRD team for the continued support in the development of the technology at the base of the DUETTO instrument, as well as the inXitu Inc staff who contributed to its design. PS thanks Daniel Martin-Ramos (University of Granada, Spain) for his continuous support and help in modeling and implementing displacement corrections for DUETTO in Xpowder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Chiari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiari, G., Sarrazin, P. & Heginbotham, A. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument. Appl. Phys. A 122, 990 (2016). https://doi.org/10.1007/s00339-016-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0521-x

Keywords

Navigation