Skip to main content
Log in

Development of a translation stage for in situ noninvasive analysis and high-resolution imaging

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Noninvasive imaging techniques and analytical instrumentation for cultural heritage object studies have undergone a tremendous development over the last years. Many new miniature and/or handheld systems have been developed and optimized. Nonetheless, these instruments are usually used with a tripod or a manual position system. This is very time consuming when performing point analysis or 2D scanning of a surface. The Centre Européen d’Archéométrie has built a translation system made of pluggable rails of 1 m long with a maximum length and height of 3 m. Three motors embedded in the system allow the platform to be moved along these axis, toward and backward from the sample. The rails hold a displacement system, providing a continuous movement. Any position can be reached with a reproducibility of 0.1 mm. The displacements are controlled by an Ethernet connection through a laptop computer running a multiplatform custom-made software written in JAVA. This software allows a complete control over the positioning using a simple, unique, and concise interface. Automatic scanning can be performed over a large surface of 3 m on 3 m. The Ethernet wires provide also the power for the different motors and, if necessary, the detection head. The platform has been originally designed for a XRF detection head (with its full power alimentation) but now can accommodate many different systems like IR reflectography, digital camera, hyperspectral camera, and Raman probes. The positioning system can be modified to combine the acquisition software of the imaging or analytical techniques and the positioning software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. West, A. Ellis, P. Potts, C. Streli, C. Vanhoof, D. Wegrzynek, P. Wobrauschek, J. Anal. At. Spectrom. 28, 1544 (2013)

    Article  Google Scholar 

  2. M. Blonski, C. Appoloni, Appl. Radiat. Isot. 89, 47 (2014)

    Article  Google Scholar 

  3. F.-P. Hocquet, H.P. Garnir, A. Marchal, M. Clar, C. Oger, D. Strivay, X-ray Spectrom. 37(4), 304 (2008)

    Article  Google Scholar 

  4. A. Migliori, P. Bonanni, P. Carraresi, N. Grassia, P.A. Mando, X-ray Spectrom. 40(2), 107 (2011)

    Article  Google Scholar 

  5. H. Bronk, S. Rohrs, A. Bjeoumikhov, N. Langhoff, J. Schmalz, R. Wedell, H.E. Gorny, A. Herold, U. Waldschlager, J. Analyt. Chem. 371, 307 (2001)

    Google Scholar 

  6. K. Trentelman, M. Bouchard, M. Ganio, C. Namowicz, C. Schmidt Patterson, M. Walton, X-ray Spectrom. 39(3), 159 (2009)

    Article  Google Scholar 

  7. A. Deneckere, F.-P. Hocquet, A. Born, P. Klein, S. Rakkaa, S. Lycke, K. De Langhe, M. Martens, D. Strivay, P. Vandenabeele, L. Moens, J. Raman Spectrosc. 41(11), 1500 (2010)

    Article  ADS  Google Scholar 

  8. F.-P. Hocquet, H. Calvo del Castillo, A. Xicotencatl, C. Bourgeois, C. Oger, A. Marchal, M. Clar, S. Rakkaa, E. Micha, D. Strivay, Analyt. Bioanalyt. Chem. 399(9), 3109 (2011)

    Article  Google Scholar 

  9. M. Alfeld, K. Janssens, J. Dik, J. Anal. At. Spectrom. 26, 899 (2011)

    Article  Google Scholar 

  10. M. Alfeld, J. Broekaert, Spectrochim. Acta Part B 88, 211 (2013)

    Article  ADS  Google Scholar 

  11. D. Saunders, J. Cupitt, J. Padfield, in Digital Heritage: Applying Digital Imaging to Cultural Heritage, ed. by L. MacDonald (Butterworth-Heinemann, Burlington, 2006), pp. 521–548

    Google Scholar 

  12. A. Ribés Cortés, Analyse multispectrale et reconstruction de la réflectance spectrale de tableaux de maître. Ph.D. Dissertation, Ecole Nationale Supérieure des Télécommunications, Paris (2003)

  13. H. Liang, Appl. Phys. A Mater. Sci. Process. 106(2), 309 (2012)

    Article  ADS  Google Scholar 

  14. F.B. Ferreira, Digitalizacao Hiperespectral de Pinturas e Obras de Arte, Ph.D. Dissertation (Universidade da Beira Interior, Covilha, 2010)

  15. P.D. Pinto, Colorimetria hiperespectral de pinturas artsticas Ph.D. Dissertation, Universidade do Minho, Braga (2010). http://repositorium.sdum.uminho.pt/handle/1822/13866

  16. M. Gargano, D. Bertani, E Conserv. Mag. 25(1), 53 (2013)

    Google Scholar 

  17. D. Bertani, L. Consolandi, in Digital Heritage: Applying Digital Imaging to Cultural Heritage, ed. by L. MacDonald (Butterworth-Heinemann, Burlington, 2006), pp. 211–238

    Google Scholar 

  18. A. Cosentino, E Conserv. Mag. 25(1), 64 (2013)

    Google Scholar 

  19. V.A. Solé, E. Papillon, M. Cotte, Ph Walter, J. Susini, Spectrochim. Acta Part B 62(1), 63 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Strivay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strivay, D., Clar, M., Rakkaa, S. et al. Development of a translation stage for in situ noninvasive analysis and high-resolution imaging. Appl. Phys. A 122, 950 (2016). https://doi.org/10.1007/s00339-016-0476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0476-y

Keywords

Navigation