Skip to main content
Log in

Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic properties of magnetostrictive FeGa films deposited by electrodeposition method on flexible curvature substrates were investigated under various mechanical stresses. The stresses of the bowed substrates were realized by series of different concentric circles. FeGa films exhibit a significant uniaxial magnetic anisotropy after the application of tensile or compressive stress, and the anisotropy of the film can be regulated by the residual stress. In addition, the magnetostriction of FeGa films is estimated through approximate calculation, indicating that the saturation magnetostrictive constant of films is enhanced with the increased tensile and compressive strains. These results provide another way to tune the magnetic properties and magnetostriction of flexible thin films, which is particularly important for the development of the flexible magneto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, V.M. Keppens, G. Petculescu, R.A. Taylor, J. Appl. Phys. 93, 8621 (2003)

    Article  ADS  Google Scholar 

  2. A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A. Lograsso, D.L. Schlagel, IEEE Trans. Magn. 36, 3238 (2000)

    Article  ADS  Google Scholar 

  3. J. Atulasimha, A.B. Flatau, Smart Mater. Struct. 20, 043001 (2011)

    Article  ADS  Google Scholar 

  4. J.J. Scheidler, M.J. Dapino, Smart Mater. Struct. 22, 085015 (2013)

    Article  ADS  Google Scholar 

  5. T. Ueno, J. Appl. Phys. 117, 17A740 (2015)

    Article  Google Scholar 

  6. P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, I. Takeuchi, Appl. Phys. Lett. 94, 243507 (2009)

    Article  ADS  Google Scholar 

  7. A. Mahadevan, P.G. Evans, M.J. Dapino, Appl. Phys. Lett. 96, 012502 (2010)

    Article  ADS  Google Scholar 

  8. A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Mater. Trans. 43, 881 (2002)

    Article  Google Scholar 

  9. G. Dai, Q. Zhan, H. Yang, Y. Liu, X. Zhang, Z. Zuo, B. Chen, R.-W. Li, J. Appl. Phys. 114, 173913 (2013)

    Article  ADS  Google Scholar 

  10. E. Quandt, A. Ludwig, J. Appl. Phys. 85, 6232 (1999)

    Article  ADS  Google Scholar 

  11. C. Mudivarthi, S. Datta, J. Atulasimha, A. Flatau, Smart Mater. Struct. 17, 035005 (2008)

    Article  ADS  Google Scholar 

  12. X. Zhang, Q. Zhan, G. Dai, Y. Liu, Z. Zuo, H. Yang, B. Chen, R.-W. Li, Appl. Phys. Lett. 102, 022412 (2013)

    Article  ADS  Google Scholar 

  13. Y. Yu et al., Appl. Phys. Lett. 106, 162405 (2015)

    Article  ADS  Google Scholar 

  14. R.K. Pal, A.A. Farghaly, M.M. Collinson, S.C. Kundu, V.K. Yadavalli, Adv. Mater. 28, 1406 (2016)

    Article  Google Scholar 

  15. J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi, H.Y. Zhao, H.W. Zhu, H.L. Jiang, S.H. Yu, Adv. Mater. 28, 722 (2016)

    Article  Google Scholar 

  16. C. Barraud et al., Appl. Phys. Lett. 96, 072502 (2010)

    Article  ADS  Google Scholar 

  17. X. Zhang, Q. Zhan, G. Dai, Y. Liu, Z. Zuo, H. Yang, B. Chen, R.-W. Li, J. Appl. Phys. 113, 17a901 (2013)

    Google Scholar 

  18. G. Dai, Q. Zhan, Y. Liu, H. Yang, X. Zhang, B. Chen, R.-W. Li, Appl. Phys. Lett. 100, 122407 (2012)

    Article  ADS  Google Scholar 

  19. R. Ranchal, S. Fin, D. Bisero, J. Phys. D Appl. Phys. 48, 075001 (2015)

    Article  ADS  Google Scholar 

  20. K.S.M. Reddy, E.C. Estrine, D.-H. Lim, W.H. Smyrl, B.J.H. Stadler, Electrochem. Commun. 18, 127 (2012)

    Article  Google Scholar 

  21. P.D. McGary, K.S. Reddy, G.D. Haugstad, B.J. Stadler, J. Electrochem. Soc. 157, D656 (2010)

    Article  Google Scholar 

  22. D. Iselt, U. Gaitzsch, S. Oswald, S. Fähler, L. Schultz, H. Schlörb, Electrochim. Acta 56, 5178 (2011)

    Article  Google Scholar 

  23. N. Lei, S. Park, P. Lecoeur, D. Ravelosona, C. Chappert, O. Stelmakhovych, V. Holý, Phys. Rev. B 84, 012404 (2011)

    Article  ADS  Google Scholar 

  24. V.K. Khanna, J. Phys. D Appl. Phys. 44, 034004 (2011)

    Article  ADS  Google Scholar 

  25. C.J. Quinn, P.J. Grundy, N.J. Mellors, J. Magn. Magn. Mater. 361, 74 (2014)

    Article  ADS  Google Scholar 

  26. C.-C. Liu, S.-U. Jen, J.-Y. Juang, C.-K. Lo, J. Alloys Compd. 562, 111 (2013)

    Article  Google Scholar 

  27. B. Peng, W.L. Zhang, Q.Y. Xie, H.C. Jiang, W.X. Zhang, Y.R. Li, J. Magn. Magn. Mater. 318, 14 (2007)

    Article  ADS  Google Scholar 

  28. J.B. Restorff, M. Wun-Fogle, A.E. Clark, K.B. Hathaway, IEEE Trans. Magn. 42, 3087 (2006)

    Article  ADS  Google Scholar 

  29. H. Szymczak, IEEE Trans. Magn. 30, 702 (1994)

    Article  ADS  Google Scholar 

  30. B.W. Wang, S.Y. Li, Y. Zhou, W.M. Huang, S.Y. Cao, J. Magn. Magn. Mater. 320, 769 (2008)

    Article  ADS  Google Scholar 

  31. M.C. Zhang, H.L. Jiang, X.X. Gao, J. Zhu, S.Z. Zhou, J. Appl. Phys. 99, 023903 (2006)

    Article  ADS  Google Scholar 

  32. R.A. Kellogg, A.B. Flatau, A.E. Clark, M. Wun-Fogle, T.A. Lograsso, J. Appl. Phys. 91, 7821 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (2012CB933101), National Science Fund of China (51371092. 11574121), PCSIRT (Grant No. IRT1251), Open Project of Key Laboratory of Sensor and Sensor Technology, Gansu Province (Institute of Sensor Technology, Gansu Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Wang, Z., Pan, L. et al. Controllable magnetic and magnetostrictive properties of FeGa films electrodeposited on curvature substrates. Appl. Phys. A 122, 938 (2016). https://doi.org/10.1007/s00339-016-0468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0468-y

Keywords

Navigation