Skip to main content
Log in

Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Phys. Rev. B 58, R13411 (1998)

    Article  ADS  Google Scholar 

  2. B. Liang, X.Y. Zou, B. Yuan, J.C. Cheng, Appl. Phys. Lett. 96, 233511 (2010)

    Article  ADS  Google Scholar 

  3. H.X. Sun, S.Y. Zhang, X.J. Shui, Appl. Phys. Lett. 100, 103507 (2012)

    Article  ADS  Google Scholar 

  4. Y. Li, J. Tu, B. Liang, X.S. Guo, D. Zhang, J.C. Cheng, J. Appl. Phys. 112, 064504 (2012)

    Article  ADS  Google Scholar 

  5. Z.J. He, S.S. Peng, Y.T. Ye, Z.W. Dai, C.Y. Qiu, M.Z. Ke, Z.Y. Liu, Appl. Phys. Lett. 98, 083505 (2011)

    Article  ADS  Google Scholar 

  6. H. Jia, M.Z. Ke, C.H. Li, C.Y. Qiu, Z.Y. Liu, Appl. Phys. Lett. 102, 153508 (2013)

    Article  ADS  Google Scholar 

  7. J.J. Chen, X. Han, G.Y. Li, J. Appl. Phys. 113, 184506 (2013)

    Article  ADS  Google Scholar 

  8. R. Riedlinger, U.S. Patent 4618796 (1986)

  9. C. Liu, Z.L. Du, Z. Sun, H.J. Gao, X. Guo, Phys. Rev. Appl. 3, 064014 (2015)

    Article  ADS  Google Scholar 

  10. B. Liang, B. Yuan, J.C. Cheng, Phys. Rev. Lett. 103, 104301 (2009)

    Article  ADS  Google Scholar 

  11. B. Liang, X.S. Guo, J. Tu, D. Zhang, J.C. Cheng, Nat. Mater. 9, 989 (2010)

    Article  ADS  Google Scholar 

  12. Y. Li, B. Liang, Z.M. Gu, X.Y. Zou, J.C. Cheng, Appl. Phys. Lett. 103, 053505 (2013)

    Article  ADS  Google Scholar 

  13. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993)

    Article  ADS  Google Scholar 

  14. Z.Y. Cui, T.N. Chen, J.H. Wu, H.L. Chen, B. Zhang, Appl. Phys. Lett. 93, 144103 (2008)

    Article  ADS  Google Scholar 

  15. X.Z. Zhou, Y.S. Wang, C.Z. Zhang, J. Appl. Phys. 106, 014903 (2009)

    Article  ADS  Google Scholar 

  16. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, B. Aoubiza, Phys. Rev. B 81, 214303 (2010)

    Article  ADS  Google Scholar 

  17. J.C. Hsu, J. Phys. D Appl. Phys. 44, 055401 (2011)

    Article  ADS  Google Scholar 

  18. M.B. Assouar, M. Oudich, Appl. Phys. Lett. 100, 123506 (2012)

    Article  ADS  Google Scholar 

  19. S.W. Zhang, J.H. Wu, Z.P. Hu, J. Appl. Phys. 113, 163511 (2013)

    Article  ADS  Google Scholar 

  20. R. Pourabolghasem, S. Mohammadi, A.A. Eftekhar, A. Khelif, A. Adibi, Appl. Phys. Lett. 105, 231908 (2014)

    Article  ADS  Google Scholar 

  21. Y.G. Li, T.N. Chen, X.P. Wang, Y.H. Xi, Q.X. Liang, Phys. Lett. A 379, 412 (2015)

    Article  Google Scholar 

  22. X.F. Li, X. Ni, L. Feng, M.H. Lu, C. He, Y.F. Chen, Phys. Rev. Lett. 106, 084301 (2011)

    Article  ADS  Google Scholar 

  23. B. Yuan, B. Liang, J.C. Tao, X.Y. Zou, J.C. Cheng, Appl. Phys. Lett. 101, 043503 (2012)

    Article  ADS  Google Scholar 

  24. R.Q. Li, B. Liang, Y. Li, W.W. Kan, X.Y. Zou, J.C. Cheng, Appl. Phys. Lett. 101, 263502 (2012)

    Article  ADS  Google Scholar 

  25. Y.F. Zhu, X.Y. Zou, B. Liang, J.C. Cheng, Appl. Phys. Lett. 107, 113501 (2015)

    Article  ADS  Google Scholar 

  26. A. Cicek, O.A. Kaya, B. Ulug, Appl. Phys. Lett. 100, 111905 (2012)

    Article  ADS  Google Scholar 

  27. J.H. Oh, H.W. Kim, P.S. Ma, H.M. Seung, Y.Y. Kim, Appl. Phys. Lett. 100, 213503 (2012)

    Article  ADS  Google Scholar 

  28. H.X. Sun, S.Y. Zhang, S.Q. Yuan, J.P. Xia, Appl. Phys. A 122, 328 (2016)

    Article  ADS  Google Scholar 

  29. COMSOL Multiphysics 3.5 Manual, Comsol AB, Stohkholm, Sweden (2008)

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Basic Research Program of China (No. 2011CB610306), the Project of National Natural Science Foundation of China (No. 51275377), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, A., Chen, T., Wang, X. et al. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal. Appl. Phys. A 122, 759 (2016). https://doi.org/10.1007/s00339-016-0295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0295-1

Keywords

Navigation