Skip to main content
Log in

A low-cost dielectric spectroscopic system using metamaterial open horn-ring resonator-inspired BSF and detection circuitry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The sensitivity in a lower microwave band dielectric spectroscopic system is relatively less compared to that of millimeter wave and terahertz system. This work reports modeling and development of an epsilon-negative metamaterial resonator-inspired microwave band-stop filter as a prototype device and its detection circuitry for the spectroscopic analysis of dielectric samples in S-band. The device structure consists of a diamond-shaped patch with a complementary open split horn-ring resonator, fabricated on a Neltech substrate of relative permittivity (ε r = 3.2). The measured transmission coefficient at 2.2 GHz and simulated result at 2.24 GHz demonstrate an excellent accuracy in the device fabrication. A low-cost connector-type microwave signal detection system was assembled for the real-time transduction of device signal into an equivalent DC voltage. Further, a single channel cavity developed using polydimethylsiloxane was placed over the resonator gap for analyzing the perturbation effect of electric field intensity on the resonance and circuit output DC level for different dielectric samples under test. The performed calibrations show linearity up to 82.5 % in the device response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.W. Barone, R.S. Parker, M.S. Strano, Anal. Chem. 77, 7556–7562 (2005)

    Article  Google Scholar 

  2. R.A. Villamizar, A. Maroto, F.X. Rius, I. Inza, M.J. Figueras, Biosens. Bioelectron. 24, 279–283 (2008)

    Article  Google Scholar 

  3. L. Josephson, J.M. Perez, R. Weissleder, Angew. Chem. Int. Ed. 40, 3204–3208 (2001)

    Article  Google Scholar 

  4. L. Li, L. Zang, J. Yu, S. Ge, X. Song, Biosens. Bioelect. 71, 108–114 (2015)

    Article  Google Scholar 

  5. K.A. Rawat, H. Basu, R.K. Singhal, S.K. Kailasa, RSC Adv. 5, 19924–19932 (2015)

    Article  Google Scholar 

  6. W.B. Mefteh, H. Touzi, Y. Chevalier, F. Bessueille, R. Kalfat, N.J. Renault, Sens. Actuators B Chem. 213, 334–342 (2015)

    Article  Google Scholar 

  7. A. Chahadih, P.Y. Cresson, Z. Hamouda, S. Gu, C. Mismer, T. Lasri, Sens. Actuators A Phys. 229, 128–135 (2015)

    Article  Google Scholar 

  8. N.Y. Kim, R. Dhakal, K.K. Adhikari, E.S. Kim, C. Wang, Biosens. Bioelect. 67, 687–693 (2015)

    Article  Google Scholar 

  9. T. Chretiennot, D. Dubuc, K. Grenier, IEEE Trans. Microw. Theory Tech. 61, 972–978 (2013)

    Article  ADS  Google Scholar 

  10. V.G. Veselago, Sov. Phys. Usp. 10, 509–514 (1968)

    Article  ADS  Google Scholar 

  11. J.J. Yang, M. Huangand, J. Sun, IEEE Sens. J. 11, 2254–2259 (2011)

    Article  Google Scholar 

  12. I. Gil, J. Bonache, M. Gil, J.G. Garcia, F. Martin, R. Marques, IEEE Melecon. 1, 225–228 (2006)

    Google Scholar 

  13. J. Bonache, I. Gil, J. Garcia-Garcia, F. Martin, IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006)

    Article  ADS  Google Scholar 

  14. O.A. Safia, L. Talbi, K. Hettak, IEEE Trans. Mag. 49, 968–973 (2013)

    Article  ADS  Google Scholar 

  15. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, D. Abbott, Sens. Actuators A Phys. 189, 233–237 (2013)

    Article  Google Scholar 

  16. H.J. Lee, H.S. Lee, J. Appl. Phys. 108, 014908:1–014908:6 (2010)

    Google Scholar 

  17. I.A.I. Al-Naib, C. Jansen, M. Koch, Appl. Phys. Lett. 93, 083507:1–083507:3 (2008)

    Article  Google Scholar 

  18. M. Karaaslan, M. Bakir, Prog. Electromagn. Res. 149, 55–67 (2014)

    Article  Google Scholar 

  19. S.J. Park, J.T. Hong, S.J. Choi, H.S. Kim, W.K. Park, S.T. Han, Y.J. Park, S. Lee, D.S. Kim, Y.H. Ahn, Nat. Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  20. A. Batmanov, E. Burte, R. Mikuta, A. Boutejdar, A. Omar, A. Khaidurova, in Proceedings of the European Microwave Conference, vol. 42, pp. 1123–1126 (2012)

  21. S. Fallahzadeh, M. Tayarani, Prog. Electromagn. Res. Lett. 11, 167–172 (2009)

    Article  Google Scholar 

  22. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773–4779 (1996)

    Article  ADS  Google Scholar 

  23. Z. Szabo, G.-H. Park, R. Hedge, E.-P. Li, IEEE Trans. Microw. Theory Tech. 58, 2646–2653 (2010)

    Article  ADS  Google Scholar 

  24. P. Velez, J. Naqui, M.D. Sindreu, J. Bonache, F. Martin, Int. J. Antenna Propag. 2012, 1–6 (2012)

    Article  Google Scholar 

  25. Y.-J. An, B.-H. Kim, G.-H. Yun, S.-W. Kim, S.-B. Hong, J.-G. Yook, IEEE Trans. Biomed. Circuits Syst. 10, 300–308 (2015)

    Article  Google Scholar 

  26. R. Yadav, P.N. Patel, IEEE Sens. J. 16, 4354–4361 (2016)

    Article  Google Scholar 

  27. K.-S. Koh, J. Chin, J. Chia, C.-L. Chiang, Micromachines 3, 427–441 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Electronics Engineering Departments, Sardar Vallabhbhai National Institute of Technology, for providing the measurement facility. They also thank Department of Science and Technology (DST), India, for supporting this research under INSPIRE fellowship Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Patel, P.N. A low-cost dielectric spectroscopic system using metamaterial open horn-ring resonator-inspired BSF and detection circuitry. Appl. Phys. A 122, 711 (2016). https://doi.org/10.1007/s00339-016-0238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0238-x

Keywords

Navigation