Skip to main content
Log in

Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effects of laser fluence on the properties of carbon nanostructures produced by laser ablation method in liquid nitrogen have been studied experimentally. The beam of a Q-switched Nd:YAG laser of 1064-nm wavelength at 7 ns pulse width and different fluences is employed to irradiate the graphite target in liquid nitrogen. Properties of carbon nanostructures were studied using their UV–Vis–NIR spectrum, TEM images, and Raman scattering spectrum. Two categories of graphene nanosheets and carbon nanoparticles were observed due to variation of laser fluence. Results show that in our experimental condition there is a threshold fluence for producing carbon nanoparticles. With increasing the laser fluence from the threshold, the amount of carbon nanoparticles in suspensions was increased, while the amount of graphene nanosheets was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  3. C. Casiraghi, J. Robertson, A.C. Ferrari, Diamond-like carbon for data and beer storage. Mater. Today 10, 44–53 (2007)

    Article  Google Scholar 

  4. R. Hauert, An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991–1003 (2004)

    Article  Google Scholar 

  5. M. Endo, T. Hayashi, Y.A. Kim, H. Muramatsu, Development and application of carbon nanotubes. Jpn. J. Appl. Phys. 45, 4883–4892 (2006)

    Article  ADS  Google Scholar 

  6. S.Z. Mortazavi, P. Parvin, A. Reyhani, Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547–552 (2012)

    Article  ADS  Google Scholar 

  7. E. Solati, D. Dorranian, Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B 122, 76 (2016)

    Article  ADS  Google Scholar 

  8. D. Dorranian, E. Solati, L. Dejam, Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)

    Article  ADS  Google Scholar 

  9. M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)

    Article  Google Scholar 

  10. A. Mehrani, D. Dorranian, E. Solati, Properties of Au/ZnO nanocomposite prepared by laser irradiation of the mixture of individual colloids. J. Cluster Sci. 26, 1743–1754 (2015)

    Article  Google Scholar 

  11. E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Clust. Sci. 26, 727–742 (2015)

    Article  Google Scholar 

  12. E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol. 58, 26–32 (2014)

    Article  ADS  Google Scholar 

  13. E. Solati, M. Mashayekh, D. Dorranian, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694 (2013)

    Article  ADS  Google Scholar 

  14. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990)

    Article  ADS  Google Scholar 

  15. J.L. Chen, X.P. Yan, A dehydration and stabilizer free approach to production of stable water dispersions of graphene nanosheets. J. Mater. Chem. 20, 4328–4332 (2010)

    Article  Google Scholar 

  16. V. Kumar, V. Singh, S. Umrao, V. Parashar, Sh Abraham, A.K. Singh, G. Nath, P.S. Saxena, A. Srivastava, Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv. 4, 21101–21107 (2014)

    Article  Google Scholar 

  17. H. Ghanbari, R. Sarraf-Mamoory, J. Sabbaghzadeh, A. Chehrghani, R. Malekfar, Nonlinear optical absorption of carbon nanostructures synthesized by laser ablation of highly oriented pyrolytic graphite in organic solvents. Int. J. Opt. Photonics 7, 113–124 (2013)

    Google Scholar 

  18. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  ADS  Google Scholar 

  19. S. Dhar, A. Roy Barman, G.X. Ni, X. Wang, X.F. Xu, Y. Zheng, S. Tripathy, B. Ariando, A. Rusydi, K.P. Loh, M. Rubhausen, A.H. Castro Neto, B. Özyilmaz, T. Venkatesan, A new route to graphene layers by selective laser ablation. AIP Adv. 1, 022109 (2011)

    Article  ADS  Google Scholar 

  20. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547–2556 (2009)

    Article  Google Scholar 

  21. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    Article  ADS  Google Scholar 

  22. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  23. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007)

    Article  ADS  Google Scholar 

  24. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014)

    Google Scholar 

  25. J.E. Proctor, E. Gregoryanz, K.S. Novoselov, M. Lotya, J.N. Coleman, M.P. Halsall, High-pressure Raman spectroscopy of graphene. Phys. Rev. B 80, 073408 (2009)

    Article  ADS  Google Scholar 

  26. S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346–352 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaie, N., Dorranian, D. Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen. Appl. Phys. A 122, 558 (2016). https://doi.org/10.1007/s00339-016-0091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0091-y

Keywords

Navigation