Skip to main content
Log in

Electromagnetic absorption and conductivity of organometallic TiOx–Py plasma compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organometallic compounds made of titanium oxide (TiOx) and pyrrole (Py) were synthesized by plasma to combine the photoelectronic activity of TiO and Py in hybrid materials with potential use in photostimulated processes as photoelectronic devices in pollutant degradation or in solar photocollectors. The Ti precursors were based on titanium tetrapropoxide combined with Py in 1:1 mass ratio in a vacuum tubular glass reactor under resistive electrical glow discharges of water vapor plasmas. The TiOx–Py hybrid compounds with x in the 2.75–3.55 interval absorbed electromagnetic radiation in two regions with different intensities. The first and most intense one was from approximately 190 to 350 nm and the other from roughly 350 to 900 nm, which indicates that in the first interval, the TiO fraction dominates the absorption and that the activity of the second region belonged to Py segments. The electrical conductivity was in the (10−6–10−10) S/m interval with activation energy in the (0.015–2.42) eV range, depending on the reaction time and synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Watanabe, G. Qin, Appl. Phys. A Mater. 116, 1281–1285 (2014)

    Article  ADS  Google Scholar 

  2. M. Hussain, R. Ceccarelli, D.L. Marchisio, D. Fino, N. Russo, F. Geobaldo, Chem. Eng. J. 157, 45–51 (2010)

    Article  Google Scholar 

  3. L. Yongye, X. Zheng, X. Jiangbin, T. Szu-Ting, W. Yue, L. Gang, R. Claire, Y. Luping, Adv. Mater. 22, 135–138 (2010)

    Article  Google Scholar 

  4. S.H. Lin, C.N. Chen, R.S. Juang, J. Environ. Manag. 90, 1950–1955 (2009)

    Article  Google Scholar 

  5. J.K. Ani, S. Savithri, G.D. Surender, Aerosol Air Qual. Res. 5, 1–13 (2005)

    Google Scholar 

  6. C. Janaky, N.R. de Tacconi, W. Chanmanee, K. Rajeshwar, J. Phys. Chem. C 116, 19145–19155 (2012)

    Article  Google Scholar 

  7. M.A. Kanjwal, M. Alm, P. Thomsen, N.A.M. Barakat, I.S. Chronakis, J. Ind. Eng. Chem. 33, 142–149 (2016)

    Article  Google Scholar 

  8. A.A. Hussain, A.R. Pal, R. Kar, H. Bailung, J. Chutia, D.S. Patil, Mater. Chem. Phys. 148(3), 540–547 (2014)

    Article  Google Scholar 

  9. W. Wu, C.C. Tseng, C. Li, C.K. Chang, J.H. Hsieh, Vacuum 118, 147–151 (2015)

    Article  ADS  Google Scholar 

  10. A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, V.R. Satsangi, Int. J. Hydrog. Energy 33, 5363–5368 (2008)

    Article  Google Scholar 

  11. F. Deng, Y. Li, X. Luo, L. Yang, X. Tu, Colloids Surf. A 395, 183–189 (2012)

    Article  Google Scholar 

  12. A. Ashery, A.A.M. Farag, M.A. Shenashen, Synth. Met. 162, 1357–1363 (2012)

    Article  Google Scholar 

  13. C. Kapridaki, L. Pinho, M.J. Mosquera, P. Maravelaki-Kalaitzaki, Appl. Catal. B Environ. 156–157, 416–427 (2014)

    Article  Google Scholar 

  14. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Science 286, 295–297 (1999)

    Article  Google Scholar 

  15. P.M. Dziewoński, M. Grzeszczuk, Electrochim. Acta 55, 3336–3347 (2010)

    Article  Google Scholar 

  16. Y.C. Liu, J.M. Huang, C.E. Tsai, T.C. Chuang, C.C. Wang, Chem. Phys. Lett. 387, 155–159 (2004)

    Article  ADS  Google Scholar 

  17. M. Ouyang, R. Bai, Y. Xu, C. Zhang, C.-A. Ma, M. Wang, H.-Z. Chen, Trans. Nonferrous Met. Soc. China 19, 1572–1577 (2009)

    Article  Google Scholar 

  18. F. González-Salgado, G.J. Cruz, M.G. Olayo, G. García-Rosales, L.M. Gómez, Adv. Mater. Phys. Chem. 2, 212–218 (2012)

    Article  Google Scholar 

  19. M.G. Olayo, F. González-Salgado, G.J. Cruz, L.M. Gómez, G. García-Rosales, M. González-Torres, O.G. Lopez-Gracia, Adv. Nanopart. 2, 229–235 (2013)

    Article  Google Scholar 

  20. C.A. Ferreira, S.C. Domenech, P.C. Lacaze, J. Appl. Electrochem. 31(1), 49–56 (2001)

    Article  Google Scholar 

  21. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, J. Power Sources 181, 172–176 (2008)

    Article  Google Scholar 

  22. F. González-Salgado, M.G. Olayo, G.J. Cruz, L.M. Gómez, E. Ordoñez, G. García-Rosales, Superf. Vacío 25(1), 56–59 (2012)

    Google Scholar 

  23. X. Li, G. Jiang, G. He, W. Zheng, Y. Tan, W. Xiao, Chem. Eng. J. 236, 480–489 (2014)

    Article  Google Scholar 

  24. X. Li, G. He, Y. Han, Q. Xue, X. Wu, S. Yang, J. Colloid Interface Sci. 387, 39–46 (2012)

    Article  Google Scholar 

  25. S. Cao, H. Zhang, Y. Song, J. Zhang, H. Yang, L. Jiang, Y. Dan, Appl. Surf. Sci. 342, 55–63 (2015)

    Article  ADS  Google Scholar 

  26. D. Wang, Y. Wang, X. Li, Q. Luo, J. An, J. Yue, Catal. Commun. 9, 1162–1166 (2008)

    Article  Google Scholar 

  27. B. Tian, Z. Shao, Y. Ma, J. Zhang, F. Chen, J. Phys. Chem. Solids 72(11), 1290–1295 (2011)

    Article  ADS  Google Scholar 

  28. S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, J. Phys. Chem. Solids 75(2), 236–243 (2014)

    Article  Google Scholar 

  29. H.S. Abdulla, A.I. Abbo, Int. J. Electrochem. Sci. 7, 10666–10678 (2012)

    Google Scholar 

  30. V. Shaktawat, N. Jain, R. Saxena, N.S. Saxena, T.P. Sharma, J. Optoelectron. Adv. Mater. 9(7), 2130–2132 (2007)

    Google Scholar 

  31. L. Wan, J.F. Li, J.Y. Feng, W. Sun, Z.Q. Mao, Mater. Sci. Eng. B Solid 139, 216–220 (2007)

    Article  Google Scholar 

  32. L.M. Gómez, M. Gonzalez-Torres, M.G. Olayo, O.G. Lopez, G.J. Cruz, C. De Jesus, in Macromolecular Symposia, vol. 325–326 (2013), pp. 112–119

  33. S.R. Nalage, S.T. Navale, V.B. Patil, Measurement 46(9), 3268–3275 (2013)

    Article  Google Scholar 

  34. Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, G. Luo, Appl. Surf. Sci. 316, 643–648 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CONACYT in Mexico for the partial financial support to this work with the project 154757 and to Jorge Perez for the assistance in the electron microscopy. F. Gonzalez acknowledges CONACYT for the doctoral fellowship received to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo J. Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Salgado, F., Olayo, M.G., García-Rosales, G. et al. Electromagnetic absorption and conductivity of organometallic TiOx–Py plasma compounds. Appl. Phys. A 122, 545 (2016). https://doi.org/10.1007/s00339-016-0059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0059-y

Keywords

Navigation