Skip to main content
Log in

Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The amorphous W/WN bi-layer with excellent thermal stability was successfully prepared by hot-filament chemical vapor deposition method on SiO2/Si substrate. It was found that the W/WN bi-layer is technological importance because of its low resistivity and good diffusion barrier properties between Cu and Si up to 700 °C for 30 min. The thermal stability was evaluated by X-ray diffractometer (XRD) and scanning electron microscope. The XRD results show that the Cu3Si phase was formed by Cu diffusion through W/WN barrier for the 800 °C annealed sample. The formation of the Cu–Si compounds denotes the failure of the W/WN diffusion barrier with rapid increase in sheet resistance of the film. The microstructure of the interface between W/WN and Cu reflects the stability and breakdown of the barriers. The failure of this amorphous barrier occurs with heat treatment when the deposited amorphous barrier material crystallizes. The major part of Cu diffusion in polycrystalline structure with disordered grain boundaries is controlled by grain boundaries. AFM results indicated a rapid increase in surface roughness at the diffusion barrier failure temperature. It was found that the grain size plays an important factor to control the thermally stability of the W/WN bi-layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ono, T. Nakano, T. Ohta, Jpn. J. Appl. Phys. 34, 1827 (1995)

    Article  ADS  Google Scholar 

  2. M.A. Nicolet, M. Bartur, J. Vac. Sci. Technol. 19, 786 (1981)

    Article  ADS  Google Scholar 

  3. S.P. Murarka, R.J. Gutmann, A.E. Kaleyeros, W.A. Lanford, Thin Solid Films 236, 257 (1993)

    Article  ADS  Google Scholar 

  4. S.P. Murarka, Mater. Sci. Eng., R 19, 87 (1997)

    Article  Google Scholar 

  5. M. Wittmer, Appl. Phys. Lett. 36, 456 (1980)

    Article  ADS  Google Scholar 

  6. M.A. Nicolet, Thin Solid Films 52, 415 (1978)

    Article  ADS  Google Scholar 

  7. R. Panwar, A. Dhingra, D. Kumar, Int. J. Adv. Eng. Technol. 1, 55 (2011)

    Google Scholar 

  8. H.C. Kim, T.L. Alford, Thin Solid Films 449, 6 (2004)

    Article  ADS  Google Scholar 

  9. J.S. Becker, S. Suh, S. Wang, R.G. Gordon, Chem. Mater. 15, 2969 (2003)

    Article  Google Scholar 

  10. H.P. Kattelus, E. Kolawa, K. Affolter, M.A. Nicolet, J. Vac. Sci. Technol., A 3, 2246 (1985)

    Article  ADS  Google Scholar 

  11. M. Yan, M. Sob, D.E. Luzzi, V. Vitek, G.J. Ackland, M. Methfessel, C.O. Rodriguez, Phys. Rev. B 47, 5571 (1993)

    Article  ADS  Google Scholar 

  12. C.C. Tripathi, M. Kumar, D. Kumar, Bull. Mater. Sci. 34, 1611 (2011)

    Article  Google Scholar 

  13. H.B. Bhandari, J. Yang, H. Kim, Y. Lin, R.G. Gordon, Q.M. Wang, J.-S.M. Lehn, H. Li, D. Shenai, ECS J. Solid State Sci. Technol. 1, 79 (2012)

    Article  Google Scholar 

  14. I.V. Raaijmakers, T. Setalvad, A.S. Bhansali, B.J. Burrow, L. Gutai, K.-B. Kim, J. Electron. Mater. 19, 1221 (1990)

    Article  ADS  Google Scholar 

  15. O.H. Gokcea, S. Amina, N.M. Ravindraa, D.J. Szostakb, R.J. Paffb, J.G. Flemingc, C.J. Galewskid, J. Shallenbergere, R. Ebyf, Thin Solid Films 353, 149 (1999)

    Article  ADS  Google Scholar 

  16. H. Kim, C. Cabral, C. Lavoie, S.M. Rossnagel, J. Vac. Sci. Technol., B 20, 1321 (2002)

    Article  Google Scholar 

  17. Z.H. Cao, K. Hu, X.K. Menga, J. Appl. Phys. 106, 113513 (2009)

    Article  ADS  Google Scholar 

  18. Y.G. Shen, Y.W. Mai, W.E. McBride, Q.C. Zhang, D.R. McKenzie, Thin Solid Films 372, 257 (2000)

    Article  ADS  Google Scholar 

  19. W. Qingxiang, L. Shuhua, W. Xianhui, F. Zhikang, Vacuum 84, 1270 (2010)

    Article  ADS  Google Scholar 

  20. F.R. de Boer, R. Boom, W.C.M. Martens, A.R. Miedema, A.K. Niessen, Cohesion in Metals Transition Metal Alloys (North-Holland, Amsterdam, 1988)

    Google Scholar 

  21. M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, T. Ohta, Thin Solid Films 286, 170 (1996)

    Article  ADS  Google Scholar 

  22. H.L. Sergey, D. Lopatin, Thin Solid Films 492, 279 (2005)

    Article  ADS  Google Scholar 

  23. H.M. Ajmera, T.J. Anderson, J. Koller, L. McElwee-White, D.P. Norton, Thin Solid Films 517, 6038 (2009)

    Article  ADS  Google Scholar 

  24. R. Ecke, S.E. Schulz, M. Hecker, T. Gessner, Microelectron. Eng. 64, 261 (2002)

    Article  Google Scholar 

  25. A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, M.R. Muhamad, Vacuum 86, 1107 (2012)

    Article  ADS  Google Scholar 

  26. R. Smoluchowski, Phys. Rev. 81, 482 (1952)

    Article  ADS  Google Scholar 

  27. M. Hecker, R. Hübner, R. Ecke, S. Schulz, H.J. Engelmann, H. Stegmann, V. Hoffmann, N. Mattern, T. Gessner, E. Zschech, Microelectron. Eng. 64, 269 (2002)

    Article  Google Scholar 

  28. J. Imahori, T. Oku, M. Murakami, Thin Solid Films 301, 142 (1997)

    Article  ADS  Google Scholar 

  29. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), p. 279

    Google Scholar 

  30. G. Kavei, G.A. Mohammadi, J. Mater. Process. Technol. 208, 514 (2008)

    Article  Google Scholar 

  31. M. Moriyama, T. Kawazoe, M. Tanaka, M. Murakami, Thin Solid Films 416, 136 (2002)

    Article  ADS  Google Scholar 

  32. N.A. Gjostein, in Diffusion, ed. by H.I. Aaronson (ASM, Metals Park, 1973), p. 241

  33. R. Le Gall, E. Qwhrd, G. Saindrenan, H. Mouton, D. Roptin, Scr. Mater. 35, 1175 (1996)

    Article  Google Scholar 

  34. K. Vieregge, D. Gupta, in Tungsten and tungsten alloys, ed. by I. Ahmad et al. (TMS, Warrendale, PA, 1991), p. 231

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Asgary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgary, S., Hantehzadeh, M.R., Ghoranneviss, M. et al. Thermal stability of amorphous tungsten/tungsten nitride synthesis using HFCVD as a diffusion barrier for copper. Appl. Phys. A 122, 518 (2016). https://doi.org/10.1007/s00339-016-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0045-4

Keywords

Navigation