Skip to main content
Log in

High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Circle and triangle micro-through-hole arrays without cracks, chips, and debris were machined in 0.3-mm-thick quartz glass by picosecond laser (wavelength = 1064 nm, pulse width ~12 ps) in air ambient. The diameter of each circle through-hole was 550 μm, and the side length of each triangle hole is 500 μm; 30 μm spacing between the adjacent hole edges and the smooth machined surface with R a = 0.8 μm roughness depicted the high precision of the high-density micro-through-hole arrays. The fundamental properties of the ps laser processing of quartz glass were investigated. The laser ablation threshold fluence of the quartz glass was determined as 3.49 J/cm2. Based on the fundamental investigation, a quantitative design of the cutting path for micro-machining of the through-holes with various geometries in quartz glass was developed. The work presents a more practical ps laser micro-machining technique for micro-through-hole arrays in glass-like materials for industrial application due to the precise quality, flexibility in geometries, ease of manipulation, and large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti, Appl. Phys. Lett. 88, 191107 (2006)

    Article  ADS  Google Scholar 

  2. S. Darvishi, T. Cubaud, J.P. Longtin, Opt. Laser. Eng. 50, 210 (2012)

    Article  Google Scholar 

  3. L. Brusberg, H. Schröder, M. Töpper, H. Reichl, in 11th Electronic Packaging Technology Conference (EPTC), (2009), p. 930

  4. H. Schröder, L. Brusberg, R. Erxleben, I. Ndip, M. Töpper, N.F. Nissen, H. Reichl, in 60th Electronic Components and Technology Conference (ECTC), (2010), p. 1647

  5. M. Töpper, I. Ndip, R. Erxleben, L. Brusberg, N. Nissen, H. Schröder, H. Yamamoto, G. Todt, H. Reichl, in 60th Electronic Components and Technology Conference (ECTC), (2010), p. 66

  6. J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 69S, S879 (1999)

    Article  ADS  Google Scholar 

  7. S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114, 91 (2014)

    Article  ADS  Google Scholar 

  8. A. Ostendorf, G. Kamlage, U. Klug, F. Korte, B.N. Chichkov, in SPIE, vol. 5713, (2005), p. 1

  9. M.Y. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J.Q. Zhu, W.G. Schulz, in SPIE, vol. 8530, (2012), p. 853007-1

  10. D. Ashkenasi, T. Kaszemeikat, N. Mueller, A. Lemke, H. J. Eichler, in SPIE, vol. 8243, (2012), p. 82430M-1

  11. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)

    Article  ADS  Google Scholar 

  12. U. Englhardt, J. Hildenhagen, K. Dickmann, Laser Tech. J. 5, 32 (2011)

    Article  Google Scholar 

  13. S. Butkus, E. Gaižauskas, D. Paipulas, Ž. Viburys, D. Kaškelyė, M. Barkauskas, A. Alesenkov, V. Sirutkaitis, Appl. Phys. A 114, 81 (2014)

    Article  ADS  Google Scholar 

  14. F. Hendricks, J. Aus der Au, V.V. Matylitsky, Appl. Phys. A 117, 149 (2014)

    Article  ADS  Google Scholar 

  15. T. Temme, A. Ostendorf, C. Kulik, K. Meyer, in SPIE, vol. 4977, (2003), p. 555

  16. J. Zhang, K. Sugioka, K. Midorikawa, Opt. Lett. 23, 1486 (1998)

    Article  ADS  Google Scholar 

  17. J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 67, 499 (1998)

    Article  ADS  Google Scholar 

  18. J. Zhang, K. Sugioka, K. Midorikawa, Appl. Phys. A 67, 545 (1998)

    Article  ADS  Google Scholar 

  19. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 111 (1999)

    Article  ADS  Google Scholar 

  20. X.M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, H. Niino, Langmuir 20, 9769 (2004)

    Article  Google Scholar 

  21. T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, in SPIE, vol. 7584, (2010), p. 758408-1

  22. H. Niino, X. Ding, R. Kurosaki, A. Narazaki, T. Sato, Y. Kawaguchi, Appl. Phys. A 79, 827 (2004)

    Article  ADS  Google Scholar 

  23. H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, R. Kurosaki, Appl. Surf. Sci. 252, 4387 (2006)

    Article  ADS  Google Scholar 

  24. T. Sato, R. Kurosaki, A. Narazaki, Y. Kawaguchi, H. Niino, Appl. Phys. A 101, 319 (2010)

    Article  ADS  Google Scholar 

  25. Y. Matsuoka, Appl. Phys. A 89, 457 (2007)

    Article  ADS  Google Scholar 

  26. L.T. Qi, K. Nishii, M. Yasui, H. Aoki, Y. Namba, Opt. Laser Eng. 48, 1000 (2010)

    Article  Google Scholar 

  27. D.W. Fradin, M. Bass, Appl. Phys. Lett. 22, 157 (1973)

    Article  ADS  Google Scholar 

  28. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  29. S.M. Eaton, H.B. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Opt. Express 13, 4708 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China (51275011) and New Century Excellent Talents in University (NCET-10-0007). Acknowledgment is also made to Scientific Research Program of Beijing Municipal Commission of Education (KZ20131005005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Hu, Y., Li, J. et al. High-precision micro-through-hole array in quartz glass machined by infrared picosecond laser. Appl. Phys. A 121, 1163–1169 (2015). https://doi.org/10.1007/s00339-015-9482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9482-8

Keywords

Navigation