Skip to main content

Advertisement

Log in

Mechanical property anisotropy in ultra-thick copper electrodeposits

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electroplating was used as a purification method and produced thick (3.2–12.2 mm) copper deposits of ultra-high radiopurity. Due to the extreme thickness of these electrodeposits compared to traditional electroplating, characterization is necessary to prevent costly failures and ensure device reliability. The deposition rate was carefully controlled to maintain a uniform growth front and required plating for a continuous 8 months in order to produce the 12.2-mm-thick copper specimen. Tensile testing shows the electroplated copper to exhibit significant strain hardening as would be expected with face-centered cubic materials, indicating that the material is free of significant defects and voids. Testing of eight tensile samples machined according to ASTM-E8 specifications exhibited yield strengths of 95 ± 4 MPa. Hardness was measured to be 79.8 ± 5.3 HV using a 200-gf load. Microstructure and deformation showed the grains to be highly aligned with respect to the growth direction, and electron backscatter diffraction showed the development of a (110) texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Leonard et al., Nucl. Instrum. Methods Phys. Res. Sect. A 591, 3 (2008)

    Article  MATH  Google Scholar 

  2. V.E. Guiseppe et al., Nucl. Sci. Symp. Conf. Rec. (2008). doi: 10.1109/NSSMIC.2008.4774740

  3. M. Keillor et al., J. Radioanal. Nucl. Chem. 282, 3 (2009)

    Article  Google Scholar 

  4. H.S. Miley et al., in Environmental Radiochemical Analysis, vol.III, ed. by P. Warwick (The Royal Society of Chemistry, Cambridge, 2007), p. 154

  5. M. Auger et al., Phys. Rev. Lett. (2012). doi:10.1088/1748-0221/7/05/P05010

    Google Scholar 

  6. J.F. Wilkerson, J. Phys. Conf. Ser. 375, 4 (2012)

    Article  Google Scholar 

  7. F.T. Avignone III, S.R. Elliot, J. Engel, Rev. Mod. Phys. 481 (2008). doi: 10.1103/RevModPhys.80.481

  8. C.E. Aalseth et al., Phys. Atomic Nucl. (2004). doi:10.1134/1.1825519

    Google Scholar 

  9. E.W. Hoppe et al., J. Radioanal. Nucl. Chem. 277, 1 (2008)

    Article  Google Scholar 

  10. X. Ye et al., J. Electrochem. Soc. 139, 6 (1992)

    Article  Google Scholar 

  11. J.M. Paik et al., Scr. Mater. 48, 6 (2003)

    Article  Google Scholar 

  12. D.T. Read, Y.W. Cheng, R. Geiss, Microelectron. Eng. 75, 1 (2004)

    Article  Google Scholar 

  13. R.P. Wijesundera, Thin Solid Films, doi: 10.1016/j.tsf.2005.11.023

  14. X.T. Zhang et al., J. Nanosci. Nanotechnol. 2568 (2008). doi: 10.1166/jnn.2008.452

  15. E.K. Park et al., J. Korean Inst. Metals Matls. 47, 11 (2009)

    Google Scholar 

  16. A. Bunsch et al., Appl. Crystallogr. XXI. 141 (2010). doi: 10.4028/www.scientific.net/SSP.163.141

  17. J.M.E. Harper et al., J. Appl. Phys. 86, 5 (1999)

    Article  Google Scholar 

  18. S.P. Hau-Riege, C.V. Thompson, Appl. Phys. Lett. 76, 3 (2000)

    Article  Google Scholar 

  19. R. Weil, Annl. Rev. Mater. Sci. 19, 1 (1989)

    Article  MathSciNet  Google Scholar 

  20. S.H. Kim et al., Mater. Trans. 51, 4 (2010)

    Google Scholar 

  21. S.J. Skrzypek et al., J. Achiev Mater. Manuf. Eng. 43, 1 (2010)

    Google Scholar 

  22. A.W. Blackwood, J.E. Casteras, in ASM International Handbook, vol.2, ed. by ASM International Handbook Committee (ASM International, USA, 2001), p. 1099

  23. J.W. Dini, D.D. Snyder, in Modern Electroplating, ed. by M. Schlesinger, M. Paunovic (Wiley, New Jersey, 2011), p. 33

  24. T. Ritzdorf, in Modern Electroplating, ed. by M. Schlesinger, M. Paunovic (Wiley, New Jersey, 2011), p. 527

  25. T. Watanabe, Nano-plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure, 1st edn. (Elsevier, Amsterdam, 2004), p. 326

    Google Scholar 

  26. G. Riveros et al., Appl. Phys. A 81, 1 (2005)

    Article  Google Scholar 

  27. V. Randle, O.R. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, 2nd edn. (CRC Press, Boca Raton, 2009), pp. 5–10

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the United States Department of Energy, Office of Nuclear Physics under Grant DE-FG02-97ER41041 for support of this work. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Support from the MAJORANA Collaboration is gratefully acknowledged along with the experimental assistance and helpful discussion of Stan Pitman, Mike Dahl and Tyler Kafentzis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Overman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overman, N.R., Overman, C.T., Edwards, D.J. et al. Mechanical property anisotropy in ultra-thick copper electrodeposits. Appl. Phys. A 120, 1181–1187 (2015). https://doi.org/10.1007/s00339-015-9298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9298-6

Keywords

Navigation