Skip to main content
Log in

Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2–0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Ellison, I.A. Cornejo, Int. J. Appl. Glass Sci. 1(1), 87 (2010)

    Article  Google Scholar 

  2. N. Saran, K. Parikh, D. Suh, E. Muñoz, H. Kolla, S.K. Manohar, J. Am. Chem. Soc. 126(14), 4462 (2004)

    Article  Google Scholar 

  3. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  ADS  Google Scholar 

  4. B. Heidari, I. Maximov, E.L. Sarwe, L. Montelius, J. Vac. Sci. Technol. B 17, 2961 (1999)

    Article  Google Scholar 

  5. Y. Hirai, K. Kanakugi, T. Yamaguchi, K. Yao, S. Kitagawa, Y. Tanaka, Microelectron. Eng. 67, 237 (2003)

    Article  Google Scholar 

  6. H. Oda, T. Ohtake, T. Takaoka, M. Nakagawa, Langmuir 25, 6604 (2009)

    Article  Google Scholar 

  7. Y. Akita, Y. Miyake, H. Nakai, H. Oi, M. Mita, S. Kaneko, M. Mitsuhashi, M. Yoshimoto, Appl. Phys. Express 4, 035201 (2011)

    Article  ADS  Google Scholar 

  8. T. Morita, K. Watanabe, R. Kometani, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui, Jpn. J. Appl. Phys. 42, 3874 (2003)

    Article  ADS  Google Scholar 

  9. D.J. Kang, B.S. Bae, J. Nishii, Jpn. J. Appl. Phys. 46, 3704 (2007)

    Article  ADS  Google Scholar 

  10. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997)

    Article  Google Scholar 

  11. M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Appl. Phys. Lett. 84, 5299 (2004)

    Article  ADS  Google Scholar 

  12. F. Hua, Y. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim, Nano Lett. 4, 2467 (2004)

    Article  ADS  Google Scholar 

  13. Y. Akita, T. Watanabe, W. Hara, A. Matsuda, M. Yoshimoto, Jpn. J. Appl. Phys. 46, L342 (2007)

    Article  ADS  Google Scholar 

  14. S. Akiba, W. Hara, T. Watanabe, A. Matsuda, M. Kasahara, M. Yoshimoto, Appl. Surf. Sci. 253, 4512 (2007)

    Article  ADS  Google Scholar 

  15. Y. Akita, Y. Kato, M. Hosaka, Y. Ono, S. Suzuki, A. Nakajima, M. Yoshimoto, Mater. Sci. Eng. B 161, 151 (2009)

    Article  Google Scholar 

  16. Y. Miyake, Y. Akita, H. Oi, M. Mita, S. Kaneko, K. Koyama, K. Sunagawa, K. Tada, Y. Hirai, M. Yoshimoto, Jpn. J. Appl. Phys. 50, 078002 (2011)

    Article  ADS  Google Scholar 

  17. K. Tada, M. Yasuda, G. Tan, Y. Miyake, H. Kawata, M. Yoshimoto, Y. Hirai, J. Vac. Sci. Technol. B 29, 06FC11 (2011)

    Article  Google Scholar 

  18. G. Tan, N. Inoue, T. Funabasama, M. Mita, N. Okuda, J. Mori, K. Koyama, S. Kaneko, M. Nakagawa, A. Matsuda, M. Yoshimoto, Appl. Phys. Exp. 7(5), 055202 (2014)

    Article  ADS  Google Scholar 

  19. M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, O. Ishiyama, M. Shinohara, M. Kubo, R. Miura, A. Miyamoto, Appl. Phys. Lett. 67, 2615 (1995)

    Article  ADS  Google Scholar 

  20. T. Maeda, M. Yoshimoto, T. Ohnishi, G.H. Lee, H. Koinuma, J. Cryst. Growth 177, 95 (1997)

    Article  ADS  Google Scholar 

  21. M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, T. Tachibana, Nature 399, 340 (1999)

    Article  ADS  Google Scholar 

  22. A. Sasaki, W. Hara, A. Matsuda, N. Tateda, S. Otaka, S. Akiba, K. Saito, T. Yodo, M. Yoshimoto, Appl. Phys. Lett. 86, 231911-1 (2005)

    Article  ADS  Google Scholar 

  23. M. Yoshimoto, R. Yamauchi, D. Shiojiri, G. Tan, S. Kaneko, A. Matsuda, J. Ceram. Soc. Jpn. 121, 1 (2013)

    Article  Google Scholar 

  24. A. Yang, O. Sakata, R. Yamauchi, Y. Katsuya, L.S.R. Kumara, Y. Shimada, A. Matsuda, M. Yoshimoto, Appl. Surf. Sci. 320, 787 (2014)

    Article  ADS  Google Scholar 

  25. K. Ebihara, S. Koshihara, M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma, M. Fujiki, Jpn. J. Appl. Phys. 36, L1211 (1997)

    Article  ADS  Google Scholar 

  26. K. Yoshida, M. Yoshimoto, K. Sasaki, T. Ohnishi, Biophys. J. 74, 1654 (1998)

    Article  Google Scholar 

  27. S.W. Pang, T. Tamamura, M. Nakao, A. Ozawa, H. Masuda, J. Vac. Sci. Technol. B 16, 1145 (1998)

    Article  Google Scholar 

  28. I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, J. Lumin. 48–49(2), 666 (1991)

    Article  Google Scholar 

  29. M. Sumiya, S. Nakamura, S.F. Chichibu, K. Mizuno, M. Furusawa, M. Yoshimoto, Appl. Phys. Lett. 77(16), 2512 (2000)

    Article  ADS  Google Scholar 

  30. M.K. Mundra, S.K. Donthu, V.P. Dravid, J.M. Torkelson, Nano Lett. 7, 713 (2007)

    Article  ADS  Google Scholar 

  31. R.L. Jones, T. Hu, C.L. Soles, E.K. Lin, R.M. Reano, S.W. Pang, D.M. Casa, Nano Lett. 6, 1723 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank laboratory members, who had contributed to the development of the sub-nanoscale nanoimprint technology, especially to Dr. S. Akiba, Dr. W. Hara, Dr. A. Matsuda, Dr. Y. Akita, Y. Sugimoto, Y. Miyake, N. Inoue, G. Tan, T. Funabasama, and Dr. S. Kaneko. The author also appreciates the helpful discussions of Professor Y. Hirai (Osaka Pref. Univ.), Professor K. Tada (Toyama Nat’l Col. Tech.), Professor M. Nakagawa (Tohoku Univ.), Mr. H. Oi (Kyodo Int’l Co.), Mr. M. Mita (Kyodo Int’l Co.), Mr. O. Suga (EIDEC Co.), Mr. K. Koyama (Namiki Precision Jewel Co.), and Mr. K. Sunakawa (Namiki Precision Jewel Co.). This work was partly supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, New Energy and Industrial Technology Development Organization (NEDO), and Nippon Sheet Glass Foundation for Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Yoshimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimoto, M. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer. Appl. Phys. A 121, 321–326 (2015). https://doi.org/10.1007/s00339-015-9247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9247-4

Keywords

Navigation