Skip to main content
Log in

Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study reports on experimental results on the morphology of laser-induced damage in the bulk of potassium dihydrogen phosphate (or KDP) crystals by nanosecond pulses. The resulting morphology of bulk laser damage is structured in four different zones whose characteristics depend on laser parameters such as wavelength, laser polarization, and fluence. To have a better understanding of bulk formation and structure of KDP laser damage, accessing the mechanical properties of KDP is a promising way which departs from a thermal approach which is mainly used in various models well documented in the literature. In that way, we have revisited various mechanical models of fracturation frequently used to evaluate the toughness of optical materials. Our experiments are compared to these models where the toughness is the criterion, which has been chosen to validate the modeling part of this study. We conclude that experiments are in agreement with the common values obtained by indentations tests proposed in the literature, allowing us further developments with one of these models to describe the damage formation in KDP crystals. Also, it appears that laser damage events split into two separated groups depending on the wavelength, with on one side 351-nm damage sites and on the other side 1064- and 532-nm damage sites. That suggests the existence of different physical mechanisms responsible for bulk damage initiation in KDP crystals with respect to the wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Bloembergen, Appl. Opt. 12(4), 661 (1973)

    Article  ADS  Google Scholar 

  2. J.D. Yoreo, A. Burnham, P. Whitman, Int. Mater. Rev. 47, 113 (2002)

    Article  Google Scholar 

  3. H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, K. Yoshida, Appl. Phys. B 70, 195 (2000)

    Article  ADS  Google Scholar 

  4. M. Feit, A. Rubenchik, in Proceedings of the SPIE 5273, (2004), pp. 74–82

  5. ISO Standard No 21254-1 (2011); ISO Standard No 21254-2 (2011); ISO Standard No 21254-3 (2011); ISO Standard No 21254-4 (2011)

  6. C. Carr, H. Radousky, A. Rubenchik, M. Feit, S. Demos, Phys. Rev. Lett. 92(8), 087401 (2004)

    Article  ADS  Google Scholar 

  7. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  8. N. Zaitseva, J.D. Yoreo, M. Dehaven, R. Vital, L. Carman, H. Spears, in 2nd Annual International Conference on Solid-State Lasers for Applications to Inertial Confinement Fusion, Paris (France), October 22–25, 1996 (1997)

  9. A. Rubenchik, M. Feit, in Proceedings of the SPIE 4679, (2002), pp. 79–94

  10. M. Feit, A. Rubenchik, J. Trenholme, in Proceedings of the SPIE 5991, (2005), p. 59910W

  11. C. Carr, M. Feit, M. Johnson, A. Rubenchik, Appl. Phys. Lett. 89, 131901 (2006)

    Article  ADS  Google Scholar 

  12. C. Carr, J. Auerbach, Opt. Lett. 31(5), 595 (2006)

    Article  ADS  Google Scholar 

  13. P. DeMange, C. Carr, R. Negres, H. Radousky, S. Demos, Opt. Lett. 30(3), 221 (2005)

    Article  ADS  Google Scholar 

  14. P. DeMange, R. Negres, A. Rubenchik, H. Radousky, M. Feit, S. Demos, J. Appl. Phys. 103, 083122 (2008)

    Article  ADS  Google Scholar 

  15. S. Demos, P. DeMange, R. Negres, M. Feit, Opt. Express 18(12), 13788 (2010)

    Article  ADS  Google Scholar 

  16. S. Reyné, G. Duchateau, J.Y. Natoli, L. Lamaignère, Appl. Phys. Lett. 96, 121102 (2010)

    Article  ADS  Google Scholar 

  17. S. Reyné, G. Duchateau, J.Y. Natoli, L. Lamaignère, Appl. Phys. B 109(4), 695 (2012)

    Article  ADS  Google Scholar 

  18. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, K. Yoshida, Jpn. J. Appl. Phys. 45(2A), 766 (2006)

    Article  ADS  Google Scholar 

  19. O. Krupych, Y. Dyachok, I. Smaga, R. Vlokh, Opt. Appl. 38(3), 567 (2008)

    Google Scholar 

  20. D. Cross, C. Carr, Appl. Opt. 50(22), D7 (2011)

    Article  Google Scholar 

  21. G. Anstis, P. Chantikul, B. Lawn, D. Marshall, J. Am. Ceram. Soc. 64, 553 (1981)

    Article  Google Scholar 

  22. T. Fang, J. Lambropoulos, J. Am. Ceram. Soc. 85(1), 174 (2002)

    Article  Google Scholar 

  23. J. Marion, Phys. Rev. B 62(5), 1595 (1987)

    MathSciNet  Google Scholar 

  24. G. Duchateau, D. Hébert, L. Hallo, in Proceedings of the SPIE 7842, (2010), p. 784234

  25. A. Evans, in Fracture Mechanics Applied to Brittle Materials, vol. ASTM STP 678, Part 2 (1979)

  26. S. Reyné, G. Duchateau, J.Y. Natoli, L. Lamaignère, Opt. Express 17(24), 21652 (2009)

    Article  Google Scholar 

  27. L. Lamaignère, M. Balas, R. Courchinoux, T. Donval, J. Poncetta, S. Reyné, B. Bertussi, H. Bercegol, J. Appl. Phys. 107, 023105 (2010)

    Article  ADS  Google Scholar 

  28. L. Lamaignère, T. Donval, M. Loiseau, J. Poncetta, G. Razé, C. Meslin, B. Bertussi, H. Bercegol, Meas. Sci. Technol. 20, 095701 (2009)

    Article  ADS  Google Scholar 

  29. P. DeMange, R. Negres, A. Rubenchick, Appl. Phys. Lett. 89, 181922 (2006)

    Article  ADS  Google Scholar 

  30. P. DeMange, R. Negres, C. Carr, H. Radousky, S. Demos, Opt. Express 14(12), 5313 (2006)

    Article  ADS  Google Scholar 

  31. P. DeMange, R. Negres, H. Radousky, S. Demos, Opt. Eng. 45(10), 104205 (2006)

    Article  ADS  Google Scholar 

  32. G. Hu, Y. Zhao, D. Li, Q. Xiao, Chin. Phys. Lett. 29(3), 037801 (2011)

    Article  ADS  Google Scholar 

  33. M. Runkel, A. Burnham, in Proceedings of the SPIE 4347, (2001), p. 408

  34. G. Duchateau, A. Dyan, Opt. Express 15(8), 4557 (2007)

    Article  ADS  Google Scholar 

  35. G. Duchateau, Opt. Express 17, 13 (2009)

    Article  Google Scholar 

  36. D. Hébert, L. Hallo, L. Voisin, T. Desanlis, A. Galtié, B. Bicrel, C. Maunier, P. Mercier, G. Duchateau, J. Appl. Phys. 109, 123527 (2011)

    Article  ADS  Google Scholar 

  37. D.R. Lide, CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reyné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyné, S., Duchateau, G., Hallo, L. et al. Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals. Appl. Phys. A 119, 1317–1326 (2015). https://doi.org/10.1007/s00339-015-9098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9098-z

Keywords

Navigation