Skip to main content
Log in

Numerical and experimental study of nanolithography using nanoscale C-shaped aperture

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoscale ridge apertures have been demonstrated to be used for high-resolution lithography. To improve the performance of nanolithography, it is necessary to study the characteristics of near-field distribution. In this paper, we perform numerical and experimental study of C-shaped nanoscale ridge aperture to analyze its detailed field distribution for contact lithography. It is found that the high imaging contrast, which is necessary for good quality lithography, is achieved within the optical near field and decays quickly with the increasing distance. We compare the C-shaped nanoscale aperture with regular shape apertures to show its advantages for producing high-transmission field intensity with high imaging contrast. It is also found that C-shaped nanoscale aperture with a smaller ridge and embedded in aluminum film can obtain better lithography result due to its enhanced transmission and high imaging contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, Q. Sun, Plasmonics 6, 565 (2011)

    Article  Google Scholar 

  2. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 71, 3773 (1995)

    Google Scholar 

  3. S. Davy, M. Spajer, Appl. Phys. Lett. 69, 3306 (1996)

    Article  ADS  Google Scholar 

  4. X. Luo, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)

    Article  ADS  Google Scholar 

  5. T. Kim, W.S. Lee, H.E. Joe, G. Lim, G.J. Choi, M.G. Gang, S.M. Kang, K.S. Park, B.K. Min, Y.P. Park, N.C. Park, Appl. Phys. Lett. 101, 161109 (2012)

    Article  ADS  Google Scholar 

  6. M. Rudman, A. Lewis, A. Mallul, V. Haviv, I. Turovets, A. Shchemelinin, I. Nebenzahl, J. Appl. Phys. 72, 4379 (1992)

    Article  ADS  Google Scholar 

  7. H. Bethe, Appl. Phys. Lett. 83, 3245 (1994)

    Google Scholar 

  8. L. Wang, S.M. Uppuluri, E.X. Jin, X. Xu, Nano Lett. 6, 361 (2006)

    Article  ADS  Google Scholar 

  9. L. Wang, X. Xu, J. Microsc. 229, 483 (2007)

    Article  Google Scholar 

  10. Y. Kim, S. Kim, H. Jung, J.W. Hahn, Proc. SPIE 7637, 76371F (2010)

    Article  ADS  Google Scholar 

  11. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D.B. Bogy, X. Zhang, Sci. Rep. 1, 175 (2011)

    Article  ADS  Google Scholar 

  12. S.M.V. Uppuluri, E.C. Kinzel, Y. Li, X. Xu, Opt. Exp. 18, 7369 (2010)

    Article  Google Scholar 

  13. N. Murphy-DuBay, L. Wang, X. Xu, Appl. Phys. A 93, 881 (2008)

    Article  ADS  Google Scholar 

  14. E.X. Jin, X. Xu, Appl. Phys. Lett. 88, 153110 (2006)

    Article  ADS  Google Scholar 

  15. L. Wang, E.X. Jin, S.M. Uppuluri, X. Xu, Opt. Exp. 14, 9902 (2006)

    Article  ADS  Google Scholar 

  16. K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

  17. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996)

    Google Scholar 

  18. Earl A. Gulbransen, W.S. Wysong, J. Phys. Chem. 51, 1087 (1947)

    Article  Google Scholar 

  19. W. Liu, D. Tsai, Phys. Rev. B 65, 155423 (2005)

    Article  ADS  Google Scholar 

  20. M.J. Madou, Fundamentals of Microfabrication (CRC Press, Boca Raton, 1997)

    Google Scholar 

  21. M.M. Alkaisi, R.J. Blaikie, S.J. McNab, Microelect. Eng. 53, 236 (2000)

    Google Scholar 

  22. A. Ghoshal, G. Webb-Wood, C. Mazuir, P.G. Kik, Proc. SPIE 5927, 255 (2005)

    ADS  Google Scholar 

  23. S.H. Chang, S.K. Gray, G.C. Schatz, Opt. Exp. 8, 3150 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support to this work by the 1000 young talents program of China is acknowledged. Fabrications of aperture samples are carried out at the Nanotechnology Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Wang, L. Numerical and experimental study of nanolithography using nanoscale C-shaped aperture. Appl. Phys. A 119, 1133–1141 (2015). https://doi.org/10.1007/s00339-015-9080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9080-9

Keywords

Navigation