Skip to main content
Log in

Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 20 April 2017

Abstract

We investigate and compare the performance of 30 layers strain-coupled quantum dot (SCQD) infrared photodetectors capped with one of two different layers: a quaternary (In0.21Al0.21Ga0.58As) or ternary (In0.15Ga0.85As) alloy of 30 Å and a GaAs layer with a thickness of 120–150 Å. Measurements of optical properties, spectral responsivity, and cross-sectional transmission electron microscopy were conducted. Results showed that quaternary capping yielded more superior multilayer QD infrared photodetectors than ternary capping. Quaternary capping resulted in enhanced dot size, order, and uniformity of the QD array. The presence of Al in the capped layer helped in the reduction in dark current density and spectral linewidth as well as led to higher electron confinement of the QDs and enhanced device detectivity. The vertically ordered SCQD system with quaternary capping exhibited higher peak detectivity (~1010 cm Hz1/2/W) than that with ternary capping (~107 cm Hz1/2/W). In addition, a very low noise current density of ~10−16 A/cm2 Hz1/2 at 77 K was achieved with quaternary-capped QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Asada, Y. Miyamoto, Y. Svetmasu, Jpn. J. Appl. Phys. 24, L95 (1985)

    Article  ADS  Google Scholar 

  2. C. Weisbuch, G. Vinter, Quantum semiconductor structures (Academic Press, Boston, 1991)

    Google Scholar 

  3. D. Bimberg, N.N. Ledentsov, ZhI Alferov, P.S. Kop’ev, V.M. Ustinov, IEEE J. Sel. Top. Quantum Electron. 3, 196 (1997)

    Article  Google Scholar 

  4. H. Saito, K. Nishi, A. Kamei, S. Sugon, IEEE Photon. Technol. Lett. 12, 1298 (2000)

    Article  ADS  Google Scholar 

  5. A. Stiff-Roberts, S. Krishna, P. Bhattacharya, S.W. Kennerly, J. Vac. Sci. Technol. B 20, 1185 (2002)

    Article  Google Scholar 

  6. A.D. Stiff, S. Krishna, P. Bhattacharya, S.W. Kennerly, IEEE J. Quantum Electron. 37, 1412 (2001)

    Article  ADS  Google Scholar 

  7. S. Adhikary, N. Halder, S. Chakrabarti, J. Nanosci. Nanotechnol. 11(5), 4067 (2011)

    Article  Google Scholar 

  8. S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, A.G.U. Perera, Appl. Phys. Lett. 99, 181102 (2011)

    Article  ADS  Google Scholar 

  9. J.R. Andrews, S.R. Restaino, S.W. Teare, Y.D. Sharma, W.-Y. Jang, T.E. Vandervelde, J.S. Brown, A. Reisinger, M. Sundaram, S. Krishna, L. Lester, IEEE Trans. Electron Devices 58, 7 (2011)

    Article  Google Scholar 

  10. G.S. Solomon, J.A. Trezza, A.F. Marshall, J.S. Harris Jr, Phys. Rev. Lett. 76, 952 (1996)

    Article  ADS  Google Scholar 

  11. M.S. Miller, J.O. Malm, M.E. Pistol, S. Jeppesen, B. Kowalski, K. Georgsson, L. Samuelson, J. Appl. Phys. 80, 3360 (1996)

    Article  ADS  Google Scholar 

  12. T. Amano, S. Yamauchi, T. Sugaya, K. Komori, Appl. Phys. Lett. 88, 261110 (2006)

    Article  ADS  Google Scholar 

  13. R. Suzuki, T. Miyamoto, T. Sengoku, F. Koyama, Appl. Phys. Lett. 92, 141110 (2008)

    Article  ADS  Google Scholar 

  14. S. Adhikary, S. Chakrabarti, Thin Solid Films 552, 146 (2014)

    Article  ADS  Google Scholar 

  15. S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A.G.U. Perera, S. Chakrabarti, Appl. Phys. Lett. 101, 261114 (2012)

    Article  ADS  Google Scholar 

  16. A. Babiński, J. Borysiuk, S. Kret, M. Czyż, A. Golnik, S. Raymond, Z.R. Wasilewski, Appl. Phys. Lett. 92, 171104 (2008)

    Article  ADS  Google Scholar 

  17. C. Sun, P. Lu, Z. Yu, H. Cao, L. Zhang, Phys. B 407, 4440 (2012)

    Article  ADS  Google Scholar 

  18. M.V. Maximov, A.F. Tsatsul’nikov, B.V. Volovik, D.S. Sizov, Y.M. Shernyakov, I.N. Kaiander, A.E. Zhukov, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, ZhI Alferov, Phys. Rev. B 62, 16671 (2000)

    Article  ADS  Google Scholar 

  19. J. Suseendran, N. Halder, S. Chakrabarti, T.D. Mishima, Mater. Sci. Eng. 6, 012006 (2009)

    Google Scholar 

  20. S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S.K. Ray, M. Herrera, M. Bonds, N.D. Browning, J. Cryst. Growth 312, 724 (2010)

    Article  ADS  Google Scholar 

  21. A. Stintz, G.T. Liu, H. Li, L.F. Lester, J.M. Malloy, IEEE Photonics Technol. Lett. 12, 591 (2000)

    Article  ADS  Google Scholar 

  22. A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev, E.A. Semenova, YuM Shernyakov, M.V. Maximov, D.A. Livshits, V.M. Ustinov, N.N. Ledentsov, D. Bimberg, ZhI Alferov, J. Cryst. Growth 251, 729 (2003)

    Article  ADS  Google Scholar 

  23. M.L. Kerfoot, A.O. Govorov, C. Czarnocki, D. Lu, Y.N. Gad, A.S. Bracker, D. Gammon, M. Scheibner, Nat. Commun. 5, 3299 (2014)

    Article  ADS  Google Scholar 

  24. A.D. Stiff-Roberts, IEEE Photonics Technol. Lett. 16, 3 (2004)

    Article  Google Scholar 

  25. A.V. Barve, S. Krishna, Semicond. Semimet. 84, 153–193 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Department of Science and Technology, India, and partial funding received from the Department of Information and Technology, Government of India, through CEN, IITBNF. Riber, France is also acknowledged. We are thankful to Dr. P. Naresh Babu, S. Prajapati and A. Kumar from SFSD/EOSG/SEDA, Space Applications Centre, ISRO for performing blackbody measurements i.e., Responsivity, Noise measurements and Detectivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakrabarti.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00339-017-0898-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tongbram, B., Shetty, S., Ghadi, H. et al. Enhancement of device performance by using quaternary capping over ternary capping in strain-coupled InAs/GaAs quantum dot infrared photodetectors. Appl. Phys. A 118, 511–517 (2015). https://doi.org/10.1007/s00339-014-8854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8854-9

Keywords

Navigation