Skip to main content
Log in

Enhancement of the electrochemical performance of hydrothermally prepared anatase nanoparticles for optimal use as high capacity anode materials in lithium ion batteries (LIBs)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 nanoparticles have been synthesized via facile hydrolytic hydrothermal technique without incorporation any template. The precious metallic nanoparticles; Ag, Pt and Pd have been embedded between the anatase particles using in situ reduction step. The structural properties of the as-synthesized samples were investigated by X-ray diffraction, transmission electron microscopic and N2 adsorption–desorption isotherm (S BET). The electrochemical studies for the as-prepared anode materials including, cyclic voltammetry and electrochemical impedance spectroscopy indicated a significant improvement in the electronic conductivity of the lithium-TiO2 cells. Therefore, the charge–discharge rates were noticeably promoted as a result of the enhancement of Li–ion diffusion and charge transfer. The cycling results of Pd-TiO2 revealed a marvelous improvement in both charge and discharge capacities by 89.4 and 88 % after 10 cycles at C/5 rate. Generally, all the as-prepared TiO2 nanocomposites showed enhanced specific capacity, cycling stability and rate capability compared to the pure TiO2, providing a promising behavior for use as anodes in lithium ion batteries (LIBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.D. Robertson, H. Tukamoto, J.T.S. Irvine, J. Electrochem. Soc. 146, 3958 (1999)

    Article  Google Scholar 

  2. J.T. Son, K.S. Park, H.G. Kim, H.T. Chung, J. Power Sources 126, 182 (2004)

    Article  ADS  Google Scholar 

  3. S. Huang, Z. Wen, X. Zhu, Z. Gu, Electrochem. Commun. 6, 1093 (2004)

    Article  Google Scholar 

  4. B.-L. He, B. Dong, H.-L. Li, Electrochem. Commun. 9, 425 (2007)

    Article  Google Scholar 

  5. C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Adv. Mater. 22, E28 (2010)

    Article  Google Scholar 

  6. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010)

    Article  Google Scholar 

  7. X. Su, Q.L. Wu, X. Zhan, J. Wu, S. Wei, Z. Guo, J. Mater. Sci. 47, 2519 (2012)

    Article  ADS  Google Scholar 

  8. S.Y. Huang, L. Kavan, I. Exnar, M. Gratzel, J. Electrochem. Soc. 142, L142 (1995)

    Article  Google Scholar 

  9. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577 (2011)

    Article  Google Scholar 

  10. K. Rajeshwar, C.R. Chenthamarakshan, S. Goeringer, M. Djukic, Pure Appl. Chem. 73, 1849 (2001)

    Article  Google Scholar 

  11. A. Primo, A. Corma, H. Garcia, Phys. Chem. Chem. Phys. 13, 886 (2011)

    Article  Google Scholar 

  12. M. Chiesa, M.C. Paganini, S. Livraghi, E. Giamello, Phys. Chem. Chem. Phys. 15, 9435 (2013)

    Article  Google Scholar 

  13. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)

    Article  Google Scholar 

  14. Z.G. Yang, D. Choi, S. Kerisit, K.M. Rosso, D.H. Wang, J. Zhang, G. Graff, J. Liu, J. Power Sources 192, 588 (2009)

    Article  Google Scholar 

  15. A. Stashans, S. Lunell, R. Bergstrom, Phys. Rev. B 53, 159 (1996)

    Article  ADS  Google Scholar 

  16. A.S. Barnard, P. Zapol, J. Phys. Chem. B 108, 18435 (2004)

    Article  Google Scholar 

  17. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Proc. Natl. Acad. Sci. USA 99, 6476 (2002)

    Article  ADS  Google Scholar 

  18. M. Wagemaker, W.J.H. Borghols, F.M. Mulder, J. Am. Chem. Soc. 129, 4323 (2007)

    Article  Google Scholar 

  19. S. Huang, Z. Wen, X. Yang, Z. Gua, X. Xu, J. Power Sources 148, 72 (2005)

    Article  ADS  Google Scholar 

  20. S. Yoon, H.K. Bok, C. Lee, M. Park, S.M. Oh, Electrochem. Solid State Lett. 12, A28 (2009)

    Article  Google Scholar 

  21. J. Yan, H. Song, S. Yang, X. Chen, Mater. Chem. Phys. 118, 367 (2009)

    Article  Google Scholar 

  22. Y.-S. Kim, H.-J. Ahn, S.H. Nam, T.Y. Seong, W.B. Kim, Electrochem. Solid State Lett. 10, A180 (2007)

    Article  Google Scholar 

  23. K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Science 312, 885 (2006)

    Article  ADS  Google Scholar 

  24. J. Yan, H. Song, S. Yang, J. Yan, X. Chen, Electrochem. Acta 53, 6351 (2008)

    Article  Google Scholar 

  25. S.H. Nam, H.-S. Shim, Y.-S. Kim, M.A. Dar, J.G. Kim, W.B. Kim, Appl. Mater. Interfaces 2, 2046 (2010)

    Article  Google Scholar 

  26. M. Kosmulski, in Surfactant Science Series, ed. by A.T. Hubbard (Marcel Dekker, Inc., New York, Basel, 2001), p. 1127

  27. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  Google Scholar 

  28. A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J.-P. Jolivet, J. Mater. Chem. 11, 1116 (2001)

    Article  Google Scholar 

  29. J.-P. Jolivet, S. Cassaignon, C. Chanéac, D. Chiche, E. Tronc, J. Sol–Gel Sci. Technol. 46, 299 (2008)

    Article  Google Scholar 

  30. S.-J. Kim, S.-D. Park, Y.H. Jeong, S. Park, J. Am. Ceram. Soc. 82, 927 (1999)

    Article  Google Scholar 

  31. M. Cerna, C. Guillard, E. Puzenat, M. Vesely, P. Dzik, Int. J. Chem. Environ. Eng. 2, 255 (2011)

    Google Scholar 

  32. N.Y. Mostafa, M.H.H. Mahmoud, Z.K. Heiba, Hydrometallurgy 139, 88 (2013)

    Article  Google Scholar 

  33. L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography (McGrow-Hill, New York, 1958)

    Google Scholar 

  34. M.V. Reddy, X.W. Valerie Teoh, T.B. Nguyen, Y.Y. Michelle Lim, B.V.R. Chowdari, J. Electrochem. Soc. 159, A762 (2012)

    Article  Google Scholar 

  35. P. Zhu, Y. Wu, M.V. Reddy, A.S. Nair, B.V.R. Chowdarid, S. Ramakrishna, RSC Adv. 2, 531 (2012)

    Article  Google Scholar 

  36. G. Sudant, E. Baudrin, D. Larcher, J.M. Tarascon, J. Mater. Chem. 15, 1263 (2005)

    Google Scholar 

  37. D. Deng, M.G. Kim, J.Y. Lee, J. Cho, Energy Environ. Sci. 2, 818 (2009)

    Article  Google Scholar 

  38. M.B. Pinson, M.Z. Bazant, J. Electrochem. Soc. 160, A243 (2012)

    Article  Google Scholar 

  39. J. Wang, Y. Zhou, Y. Hu, R. O’Hayre, Z. Shao, J. Phys. Chem. C 115, 2529 (2011)

    Article  Google Scholar 

  40. C. Jiang, M. Wei, Z. Qi, T. Kudo, I. Honma, H. Zhou, J. Power Sources 166, 239 (2007)

    Article  Google Scholar 

  41. G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, P. Knauth, Chem. Mater. 21, 63 (2009)

    Article  Google Scholar 

  42. Y.F. Wang, M.Y. Wu, W.F. Zhang, Electrochem. Acta 53, 7863 (2008)

    Article  Google Scholar 

  43. J. Li, Y.L. Jin, G.X. Zhang, H. Yang, Solid State Ion. 178, 1590 (2007)

    Article  Google Scholar 

  44. P. Podhajecký, Z. Zabransky, P. Novak, Electrochem. Acta 35, 245 (1990)

    Article  Google Scholar 

  45. M.V. Reddya, R. Joseb, T.H. Tengb, B.V.R. Chowdaria, S. Ramakrishn, Electrochim. Acta 55, 3109 (2010)

    Article  Google Scholar 

  46. C.T. Cherian, M.V. Reddy, T. Magdaleno, C. Sow, K.V. Ramanujachary, G.V.S. Rao, B.V.R. Chowdari, Cryst. Eng. Commun. 14, 978 (2012)

    Article  Google Scholar 

  47. M.V. Reddy, S. Adams, G.T.J. Liang, I.F. Mingze, H.V. Tu An, B.V.R. Chowdari, Solid State Ion. 262, 120 (2014)

    Article  Google Scholar 

  48. A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, J. Power Sources 146, 501 (2005)

    Article  ADS  Google Scholar 

  49. L.J. Fu, H. Liu, H.P. Zhang, C. Li, T. Zhang, Y.P. Wu, H.Q. Wu, J. Power Sources 159, 219 (2006)

    Article  Google Scholar 

  50. L. Kavan, M. Kalbáč, M. Zukalová, I. Exnar, V. Lorenzen, R. Nesper, M. Grätzel, Chem. Mater. 16, 477 (2004)

    Article  Google Scholar 

  51. S.C. Mui, P.E. Trapa, B. Huang, P.P. Soo, M.I. Lozow, T.C. Wang, R.E. Cohen, A.N. Mansour, S. Mukerjee, A.M. Mayes, J. Electrochem. Soc. 149, A1610 (2002)

    Article  Google Scholar 

  52. J. Xu, Y. Wang, Z. Li, W.F. Zhang, J. Power Sources 175, 903 (2008)

    Article  Google Scholar 

  53. C.-M. Park, H. Jung, H.-J. Sohn, Electrochem. Solid State Lett. 12, A171 (2009)

    Article  Google Scholar 

  54. F. La Mantia, C.D. Wessells, H.D. Deshazer, Y. Cui, Electrochem. Commun. 31, 141 (2013)

    Article  Google Scholar 

  55. J.-G. Kim, D. Shi, M.-S. Park, G. Jeong, Y.-U. Heo, M. Seo, Y.-J. Kim, J.H. Kim, S.X. Dou, Nano Res. 6, 365 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. S. Sanad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanad, M.M.S., Rashad, M.M. & Powers, K. Enhancement of the electrochemical performance of hydrothermally prepared anatase nanoparticles for optimal use as high capacity anode materials in lithium ion batteries (LIBs). Appl. Phys. A 118, 665–674 (2015). https://doi.org/10.1007/s00339-014-8776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8776-6

Keywords

Navigation