Skip to main content
Log in

Behavior of polymer-based electroactive actuator incorporated with mild hydrothermally treated CNTs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We fabricated an actuator that was made from polyurethane (PU) with carbon nanotubes (CNTs) as the filler. To improve the dispersion of the CNTs, a mild hydrothermal treatment was carried out. Carboxyl and hydroxyl groups were introduced to the surface of the CNTs, and they were found to be highly dispersed in polar solvents such as dimethylformamide. To evaluate these films, we mainly focused on electrical properties, such as dielectric spectroscopy, space charge measurements, and actuator behavior. We found that the PU/CNTs film bents toward the cathode when an electric field was applied, and it reverted to its original position when the electric field was removed. Upon the inclusion of the CNTs as the filler for the polymer, the electrical properties of the films improved significantly. The highly polarized films had a high relative permittivity, and this produced a higher Maxwell pressure, which assisted the actuation. A high accumulated charge density was observed from space charge measurements in some of the films, and this explains the bending direction and the actuation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.M. O’Brien, E.P. Calius, T. Inamura, S.Q. Xie, I.A. Anderson, Appl. Phys. A 100, 385–389 (2010)

    Article  ADS  Google Scholar 

  2. R. Kunanuruksapong, A. Sirivat, Appl. Phys. A 92, 313–320 (2008)

    Article  ADS  Google Scholar 

  3. G.J.H. Melvin, Q.Q. Ni, T. Natsuki, Microelectron. Eng. 126, 9–12 (2014)

    Article  Google Scholar 

  4. M. Ali, T. Hirai, J. Mater. Sci. 46, 7681–7688 (2011)

    Article  ADS  Google Scholar 

  5. M. Ali, T. Hirai, J. Mater. Sci. 47, 3777–3783 (2012)

    Article  ADS  Google Scholar 

  6. L.Z. Chen, C.H. Liu, C.H. Hu, S.S. Fan, Appl. Phys. Lett. 92, 263104 (2008)

    Article  ADS  Google Scholar 

  7. M. Watanabe, N. Wakimoto, H. Shirai, T. Hirai, J. Appl. Phys. 94, 2494–2497 (2003)

    Article  ADS  Google Scholar 

  8. L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, ACS Nano 5, 1588–1593 (2011)

    Article  Google Scholar 

  9. R. Shankar, T.K. Ghosh, R.J. Spontak, Soft Matter 3, 1116–1129 (2007)

    Article  ADS  Google Scholar 

  10. N.J. Jo, D.H. Lim, G.M. Bark, H.H. Chun, I.W. Lee, H. Park, J. Mater. Sci. Technol. 26, 763–768 (2010)

    Article  Google Scholar 

  11. X. Zhang, C. Löwe, M. Wissler, B. Jähne, G. Kovacs, Adv. Eng. Mater. 7, 361–367 (2005)

    Article  Google Scholar 

  12. Z. Cai, J. Kim, J. Appl. Polym. Sci. 115, 2044 (2010)

    Article  Google Scholar 

  13. K.Y. Cho, H.G. Lim, S.R. Yun, J. Kim, K.S. Kang, J. Phys. Chem. C 112, 7001–7004 (2008)

    Article  Google Scholar 

  14. M. Watanabe, Polym. Int. 56, 1265–1271 (2007)

    Article  Google Scholar 

  15. Y. Nakama, J. Kyokane, K. Tokugi, T. Ueda, K. Yoshino, Synth. Met. 135–136, 749–750 (2003)

    Article  Google Scholar 

  16. S. Yun, J. Kim, Sens. Actuators, A 154, 73–78 (2009)

    Article  Google Scholar 

  17. S.K. Yadav, S.S. Mahapatra, J.W. Park, H.C. Cho, J.Y. Lee, Fibers Polym. 10, 756–760 (2009)

    Article  Google Scholar 

  18. Y. Bai, Y. Zhang, Q. Wang, T. Wang, J. Mater. Sci. 48, 2207–2214 (2013)

    Article  ADS  Google Scholar 

  19. L.V. Karabanova, R.L.D. Whitby, A. Korobeinyk, O. Bondaruk, J.P. Salvage, A.W. Lloyd, S.V. Mikhalovsky, Compos. Sci. Technol. 72, 865–872 (2012)

    Article  Google Scholar 

  20. L. Zhang, Y. Hashimoto, T. Taishi, Q.Q. Ni, Appl. Surf. Sci. 257, 1845–1849 (2011)

    Article  ADS  Google Scholar 

  21. N.G. Sahoo, Y.C. Jung, H.J. Yoo, J.W. Cho, Compos. Sci. Technol. 67, 1920–1929 (2007)

    Article  Google Scholar 

  22. G. Kofod, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, J. Intell. Mater. Syst. Struct. 14, 787–793 (2003)

    Article  Google Scholar 

  23. L. Petit, B. Guiffard, L. Seveyrat, D. Guyomar, Sens. Actuators, A 148, 105–110 (2008)

    Article  Google Scholar 

  24. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Sens. Actuators, A 64, 77–85 (1998)

    Article  Google Scholar 

  25. K. Yoshino, Y. Inuishi, Oyo Buturi 49, 212–227 (1980)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants for Excellent Graduate Schools by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Qing Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melvin, G.J.H., Ni, QQ. & Natsuki, T. Behavior of polymer-based electroactive actuator incorporated with mild hydrothermally treated CNTs. Appl. Phys. A 117, 2043–2050 (2014). https://doi.org/10.1007/s00339-014-8616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8616-8

Keywords

Navigation