Skip to main content
Log in

A novel method for studying the buckling of nanotubes considering geometrical imperfections

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Buckling of nanotubes has been studied using many methods such as molecular dynamics (MD), molecular mechanics, and continuum-based shell theories. In MD, motion of the individual atoms is tracked under applied temperature and pressure, ensuring a reliable estimate of the material response. The response thus simulated varies for individual nanotubes and is only as accurate as the force field used to model the atomic interactions. On the other hand, there exists a rich literature on the understanding of continuum mechanics-based shell theories. Based on the observations on the behavior of nanotubes, there have been a number of shell theory-based approaches to study the buckling of nanotubes. Although some of these methods yield a reasonable estimate of the buckling stress, investigation and comparison of buckled mode shapes obtained from continuum analysis and MD are sparse. Previous studies show that the direct application of shell theories to study nanotube buckling often leads to erroneous results. The present study reveals that a major source of this error can be attributed to the departure of the shape of the nanotube from a perfect cylindrical shell. Analogous to the shell buckling in the macro-scale, in this work, the nanotube is modeled as a thin-shell with initial imperfection. Then, a nonlinear buckling analysis is carried out using the Riks method. It is observed that this proposed approach yields significantly improved estimate of the buckling stress and mode shapes. It is also shown that the present method can account for the variation of buckling stress as a function of the temperature considered. Hence, this can prove to be a robust method for a continuum analysis of nanosystems taking in the effect of variation of temperature as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Wilson, J. Macpherson, Nat. Nanotechnol. 4, 483 (2009)

    Article  ADS  Google Scholar 

  2. S.S. Wong, A.T. Woolley, T.W. Odom, J.L. Huang, P. Kim, D.V. Vezenov, C.M. Lieber, App. Phys. Lett. 73(23), 3465 (1998)

    Article  ADS  Google Scholar 

  3. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384(6605), 147 (1996)

    Article  ADS  Google Scholar 

  4. P. Ajayan, L. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12(10), 750 (2000)

    Article  Google Scholar 

  5. A. Salehi-Khojin, N. Jalili, Compos. Sci. Technol. 68(6), 1489 (2008)

    Article  Google Scholar 

  6. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4(6), 2979 (2010)

    Article  Google Scholar 

  7. Y. Huang, J. Lin, J. Zou, M.S. Wang, K. Faerstein, C. Tang, Y. Bando, D. Golberg, Nanoscale 5, 4840 (2013)

    Article  ADS  Google Scholar 

  8. B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996)

    Article  ADS  Google Scholar 

  9. C. Ru, J. Mech. Phys. Solids 49(6), 1265 (2001)

    Article  MATH  ADS  Google Scholar 

  10. M. Buehler, Y. Kong, H. Gao, J. Eng. Mater. Technol. 126, 245 (2004)

    Article  Google Scholar 

  11. J. Song, J. Wu, Y. Huang, K. Hwang, Nanotechnology 19(44), 445705 (2008)

    Article  ADS  Google Scholar 

  12. C. Wang, Y. Zhang, Y. Xiang, J. Reddy, Appl. Mech. Rev. 63, 030804 (2010)

    Article  ADS  Google Scholar 

  13. C.L. Zhang, H.S. Shen, Carbon 44, 2608 (2006)

    Article  Google Scholar 

  14. Y. Zhang, C. Wang, V. Tan, J. Eng. Mech. ASCE 132(9), 952 (2006)

    Article  Google Scholar 

  15. L. Wullschleger, H.R. Meyer-Piening, Int. J. Non-Linear Mech. 37, 645 (2002)

    Article  MATH  Google Scholar 

  16. J. Peng, J. Wu, K. Hwang, J. Song, Y. Huang, J. Mech. Phys. Solids 56(6), 2213 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. C. Wang, Z. Tay, A. Chowdhuary, W. Duan, Y. Zhang, N. Silvestre, Int. J. Struct. Stability Dyn. 6(11), 1035 (2011)

    Article  Google Scholar 

  18. A. Muc, J. Th. Appl. Mech. 49(2), 531 (2011)

    Google Scholar 

  19. F. Tong, C. Wang, S. Adhikari, J. Appl. Phys. 105, 094325 (2009)

    Article  ADS  Google Scholar 

  20. C. Li, T.W. Chou, Mech. Mater. 36, 1047 (2004)

    Article  Google Scholar 

  21. B. Liu, Y. Hang, H. Jiang, S. Qu, K. Huang, Computer Methods Appl. Mech. Eng. 193, 1849 (2005)

    Article  Google Scholar 

  22. H. Wan, F. Delale, Meccanica 45, 43 (2010)

    Article  MATH  Google Scholar 

  23. J. Wernik, S. Meguid, Acta Mech. 212, 167 (2010)

    Article  MATH  Google Scholar 

  24. A. Sears, R. Batra, Phys. Rev. B 73, 085410 (2006)

    Article  ADS  Google Scholar 

  25. W. Jiang, R. Batra, Acta Mater. 57, 4921 (2009)

    Article  Google Scholar 

  26. M. Schwarzbart, A. Steindl, H. Troger, PAMM Proc. Appl. Math. Mech. 10, 27 (2010)

    Article  Google Scholar 

  27. L. Jiang, W. Guo, J. Mech. Phys. Solids 59(6), 1204 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. S. Hollerer, Int. J. Numer. Methods Eng. 91(4), 397 (2012)

    Article  Google Scholar 

  29. Q. Wang, V. Varadan, S. Quek, Phys. Lett. A 357(2), 130 (2006)

    Article  ADS  Google Scholar 

  30. I. Elishakoff, Carbon Nanotubes and Nanosensors: Vibration, Buckling and Balistic Impact (Wiley-ISTE, New York, 2013)

  31. S. Timoshenko, J. Gere, Theory of Elastic Stability (McGraw- Hill, New York, 1961)

    Google Scholar 

  32. Y. Zhang, C. Wang, W. Duan, Y. Xiang, Z. Zong, Nanotechnology 20(39), 395707 (2009)

    Article  ADS  Google Scholar 

  33. D. Bushnell, AIAA J. 19(9), 1183 (1981)

    Article  ADS  Google Scholar 

  34. W. Koiter, The stability of elastic equilibrium (translated by E. Riks). Ph.D. thesis, Techische Hooge School at Delft (in Dutch) (1945)

  35. G. Simitses, Appl. Mech. Rev. 39(10), 1517 (1986)

    Article  ADS  Google Scholar 

  36. J. Teng, Appl. Mech. Rev. 49(4), 263 (1996)

    Article  ADS  Google Scholar 

  37. C. Schenk, G. Schuëller, Int. J. Non-Linear Mech. 38(7), 1119 (2003)

    Article  MATH  Google Scholar 

  38. W. Koiter, Koninklike Nederlandische Akademie van Wetenshappen B66, 265 (1963)

    Google Scholar 

  39. J. Hutchinson, W. Koiter, Appl. Mech. Rev. 23(12), 1353 (1970)

    Google Scholar 

  40. Y. Xiaohu, H. Qiang, Compos. Sci. Technol. 67(1), 125 (2007)

    Article  Google Scholar 

  41. K. Amara, A. Tounsi, I. Mechab, E.A. Adda-Bedia, Appl. Math. Model. 34(12), 3933 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Y. Yan, W. Wang, L. Zhang, Appl. Math. Model. 34(11), 3422 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. T. Murmu, S. Pradhan, Comput. Mater. Sci. 46(4), 854 (2009)

    Article  Google Scholar 

  44. Y. Zhang, Y. Xiang, C. Wang, J. Appl. Phys. 106(11), 113503 (2009)

    Article  ADS  Google Scholar 

  45. Q. Lu, B. Bhattacharya, Nanotechnology 16(4), 555 (2005)

    Article  ADS  Google Scholar 

  46. abaqus, ABAQUS/CAE user’s manual: version 6.4. (ABAQUS, Pawtucket, 2003)

  47. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Grap. 14, 33 (1996)

    Article  Google Scholar 

  48. S. Plimpton, J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov

  49. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112(14), 6472 (2000)

    Article  ADS  Google Scholar 

  50. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys, Cond. Matter 14(4), 783 (2002)

    Article  ADS  Google Scholar 

  51. J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997)

    Article  ADS  Google Scholar 

  52. E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Board of Research in Nuclear Sciences (BRNS) grant no. 2012/36/37-BRNS/1683 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Anoop Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop Krishnan, N.M., Ghosh, D. A novel method for studying the buckling of nanotubes considering geometrical imperfections. Appl. Phys. A 117, 945–953 (2014). https://doi.org/10.1007/s00339-014-8489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8489-x

Keywords

Navigation