Skip to main content
Log in

Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple, low-cost, post-black etching process atop the random pyramidal emitter has been proposed and investigated. The multi-scale texture is achieved by combining nanoporous layer formed by the post-black etching with micron-scale pyramid texture. Compared to the pre-black etched Si solar cells, our experiments clearly show the advantage of post-black etched texturing: it enables high blue response and improved conversion efficiency. As a result, the enhancement of 7.1 mA/cm2 on the short-circuit current density and improvement of 31 % in the conversion efficiency have been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.M. Branz, V.E. Yost, S. Ward, K.M. Jones, B. To, P. Stradins, Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl. Phys. Lett. 94, 231121 (2009)

    Article  ADS  Google Scholar 

  2. Y. Wang, Y.P. Liu, H.L. Liang, Z.X. Mei, X.L. Du, Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon. Phys. Chem. Chem. Phys. 15, 2345–2350 (2013)

    Article  Google Scholar 

  3. Dinesh Kumar, Sanjay K. Srivastava, P.K. Singh, M. Husain, Vikram Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance, Sol. Energy. Mater. Sol. Cells 95 (2011) 215–218

  4. M. Saadoun, H. Ezzaouia, B. Bessams, M.F. Boujmil, R. Bennaceur, Formation of porous silicon for large-area silicon solar cells: a new method. Sol. Energy Mater. Sol. Cells 59, 377–385 (1999)

    Article  Google Scholar 

  5. E.A. Petrova, K.N. Bogoslovskaya, L.A. Balagurov, G.I. Kochoradze, Room temperature oxidation of porous silicon in air. Mater. Sci. Eng. B 69–70, 152–156 (2000)

    Article  Google Scholar 

  6. V.V. Iyengar, B.K. Nayak, M.C. Gupta, Optical properties of silicon light trapping structures for photovoltaics. Sol. Energy Mater. Sol. Cells 94, 2251–2257 (2010)

    Article  Google Scholar 

  7. S.K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, P.K. Singh, Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Sol. Energy. Mater. Sol. Cells 100 (2012) 33–38

  8. P. Saring, A.L. Baumann, B. Schlieper-Ludewig, P. Saring, S. Kontermann, W. Schade, M. Seibt, Electronic and structural properties of femtosecond laser sulfur hyperdoped silicon pn-junctions. Appl. Phys. Lett. 103, 061904 (2013)

    Article  ADS  Google Scholar 

  9. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R.B. Wehrspohn, Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition. Appl. Phys. Lett. 100, 191603 (2012)

    Article  ADS  Google Scholar 

  10. Tsing-Hua Her, Richard J. Finlay, Wu Claudia, Shrenik Deliwala, Mazur, Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  11. S.K. Srivastava, D. Kumar, Vandana, M. Sharma, R.Kumar, P.K. Singh, Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Sol. Energy Mater. Sol. Cells. 100 (2012) 33-38

  12. B. Dou, R. Jia, H. Li, C. Chen, Y. Sun, Y. Zhang, W. Ding, Y. Meng, X. Liu, T. Ye, Fabrication of ultra-small texture arrays on multicrystalline silicon surface for solar cell application. Sol. Energy 91, 145–151 (2013)

    Article  ADS  Google Scholar 

  13. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, J. Zhu, Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1 (2005) 1062

    Google Scholar 

  14. Y. Jiang, R. Qing, H. Yang, C. Chen, H. Ma, F. Chang, Alkali-treated Si nanowire array for improving solar cell performance. Appl. Phys. A 113, 13–17 (2013)

    Article  ADS  Google Scholar 

  15. O. Jihun, H.-C. Yuan, H.M. Branz, An 18.2 %-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7, 743–748 (2012)

    Article  ADS  Google Scholar 

  16. J. Yoo, Y. Gwonjong, Y. Junsin, Black surface structures for crystalline silicon solar cells. Mater. Sci. Eng., B 159–160, 333–337 (2009)

    Article  Google Scholar 

  17. J.S. Yoo, I.O. Parm, U. Gangopadhyay, K. Kim, S.K. Dhungel, D. Mangalaraj, J. Yi, Black silicon layer formation for application in solar cells. Sol. Energy Mater. Sol. Cells. 90, 3085–3093 (2006)

    Article  Google Scholar 

  18. W.C. Hsu, Y.S. Lu, J.Y. Chyan, J.A. Yeh, High-efficiency 6″ multicrystalline black solar cells based on metal-nanoparticle-assisted chemical etching. Int. J. Photoenergy 2012, 197514 (2012)

    Article  Google Scholar 

  19. In-Ji Lee, Ungyu Paik, Jea-Gun Park, Solar cell implemented with silicon nanowires on pyramid-texture silicon surface. Sol. Energy 91, 256–262 (2013)

    Article  ADS  Google Scholar 

  20. J. Liu, M. Ashmkhan, G. Dong, B. Wang, F. Yi, Fabrication of micro-nano surface texture by CsCl lithography with antireflection and photoelectronic properties for solar cells. Sol. Energy Mater. Sol. Cells 108, 93–97 (2013)

    Article  Google Scholar 

  21. B.S. Kim, D.H. Lee, J.S. Hee Kim, G.-H. An, K.-J. Lee, N.V. Myung, Y.-H. Choa, Silicon solar cell with nanoporous structure formed on a textured surface. J. Am. Ceram. Soc. 92, 2415–2417 (2009)

    Article  Google Scholar 

  22. F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.-C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells. Appl. Phys. Lett. 99, 103501 (2011)

    Article  ADS  Google Scholar 

  23. Z. Shen, B. Liu, Y. Xia, J. Liu, J. Liu, S. Zhong, C. Li, Black silicon on emitter diminishes the lateral electric field and enhances the blue response of a solar cell by optimizing depletion region uniformity. Scripta Mater. 68, 199–202 (2013)

    Article  Google Scholar 

  24. B.R. Mohamed, H. Anouar, B. Brahim, Improvement of multicrystalline silicon solar cell performance via chemical vapor etching method-based porous silicon nanostructures. Solar Energy. 86, 1411–1415 (2012)

    Article  ADS  Google Scholar 

  25. K.-Q. Peng, Y.-J. Yan, S.-P. Gao, J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 14, 1164–1167 (2002)

    Article  Google Scholar 

  26. V. Lehmann, H. Föll, Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 137, 653–659 (1990)

    Article  Google Scholar 

  27. D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance. Solar Energy Mater. Solar Cells 95, 215–221 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Chinese Nature Science Foundation Committee (No. 11074066) and Henan Provincial Basic and Frontier Project (No. 132300410248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yurong Jiang or Fanggao Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Yang, H., Cao, W. et al. Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells. Appl. Phys. A 116, 1409–1414 (2014). https://doi.org/10.1007/s00339-014-8247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8247-0

Keywords

Navigation