Skip to main content
Log in

Ultrafast laser processing of drug particles in water for pharmaceutical discovery

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The laser fragmentation technique has been extensively used to produce inorganic nanoparticles, but its practice on organic materials, especially on drugs, is less common. Here, we briefly review the recent advances in laser micro-/nanonization of organic materials and the rationale of using laser fragmentation for drug discovery. We present our case studies of two drug models: fenofibrate and naproxen. Both drugs were fragmented in water with femtosecond (fs) laser and characterized in terms of particle size distribution and physicochemical properties. Effects of fs laser fragmentation were also compared with nanosecond (ns) laser fragmentation and with conventional media milling technique. Fs laser was more suitable to produce sub-micron size drug particles than ns laser, but degradation of drugs after nanonization was also more pronounced than micronization. Physicochemical transformations such as oxidation, hydration and amorphisation might occur during the laser–material interactions. Laser nanonization showed improved dissolution kinetics, similar to media milling. Unlike the conventional milling techniques, laser fragmentation enabled the treatment of minute amount (as small as several milligrams) of drugs with high efficiency, thus is a useful tool for particle size reduction during the early phases of drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Barcikowski, F. Devesa, K. Moldenhauer, J. Nanopart. Res. 11, 1883–1893 (2009)

    Article  Google Scholar 

  2. S. Besner, M. Meunier, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A, Piqué (Springer, Berlin, 2010), pp. 163–187

  3. S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. Lett. 89, 233122 (2006)

    Article  ADS  Google Scholar 

  4. N.G. Semaltianos, Crit. Rev. Solid State Mater. Sci. 35, 105–124 (2010)

    Article  ADS  Google Scholar 

  5. J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228–2269 (2007)

    Article  Google Scholar 

  6. G.W. Yang, Prog. Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  7. C.L. Sajti, R. Sattari, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 2421–2427 (2010)

    Article  Google Scholar 

  8. Y. Tamaki, T. Asahi, H.J. Masuhara, Phys. Chem. A 106, 2135–2139 (2002)

    Article  Google Scholar 

  9. T. Asahi, T. Sugiyama, H. Masuhara, Acc. Chem. Res. 41, 1790–1798 (2008)

    Article  Google Scholar 

  10. H.-G. Jeon, T. Sugiyama, H. Masuhara, T. Asahi, J. Phys. Chem. C 111, 14658–14663 (2007)

    Article  Google Scholar 

  11. J. Hobley, T. Nakamori, S. Kajimoto, M. Kasuya, K. Hatanaka, H. Fukumura, S.J. Nishio, Photochem. Photobiol. A 189, 105–113 (2007)

    Article  Google Scholar 

  12. P. Wagener, S. Barcikowski, Appl. Phys. A 101, 435–439 (2010)

    Article  ADS  Google Scholar 

  13. T. Sugiyama, S. Ryo, I. Oh, T. Asahi, H.J. Masuhara, Photochem. Photobiol. A 207, 7–12 (2009)

    Article  Google Scholar 

  14. S. Kenth, J.-P. Sylvestre, K. Fuhrmann, M. Meunier, J.-C. Leroux, J. Pharm. Sci. 100, 1022–1030 (2011)

    Article  Google Scholar 

  15. J.-P. Sylvestre, M.-C. Tang, A. Furtos, G. Leclair, M. Meunier, J.-C. Leroux, J. Control. Release 149, 273–280 (2011)

    Article  Google Scholar 

  16. W. Ding, J.-P. Sylvestre, G. Leclair, M. Meunier, Int. J. Theo. Appl. Nanotech. 1, 99–104 (2012)

    Google Scholar 

  17. K. Taylor, in Pharmaceutics: The Design and Manufacture of Medicines, 3rd edn. ed. by M.E. Aulton (Churchill Livingstone, Edinburgh, 2007), pp. 539–554

  18. T.A. Serajuddin, Adv. Drug Deliv. Rev. 59, 603–616 (2007)

    Article  Google Scholar 

  19. M.E. Brewster, T. Loftsson, Adv. Drug Deliv. Rev. 341, 1–19 (2007)

    Google Scholar 

  20. T. Loftsson, M.E. Brewster, J. Pharm. Pharmacol. 62, 1607–1621 (2010)

    Article  Google Scholar 

  21. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, J. Savolainen, Nat. Rev. Drug Discov. 7, 255–270 (2008)

    Article  Google Scholar 

  22. R. Duncan, S. Gac-Breton, R. Keane, R. Musila, Y. Sat, R. Satchi, F. Searle, J. Control. Release 74, 135–146 (2001)

    Article  Google Scholar 

  23. G. Bonacucina, M. Cespi, M. Misici-Falzi, G.F. Plamieri, J. Pharm. Sci. 98, 1–42 (2009)

    Article  Google Scholar 

  24. V.S. Trubetskoy, V.P. Torchilin, Adv. Drug Deliv. Rev. 16, 311–320 (1995)

    Article  Google Scholar 

  25. T.M. Allen, P.R. Cullis, Science 303, 1818–1822 (2004)

    Article  ADS  Google Scholar 

  26. V.J. Stella, R.A. Rajewski, Pharm. Res. 14, 556–567 (1997)

    Article  Google Scholar 

  27. I. Ghosh, W.M. Nau, Adv. Drug Deliv. Rev. 64, 764–783 (2012)

    Article  Google Scholar 

  28. B.E. Rabinow, Nat. Rev. Drug Discov. 3, 785–796 (2004)

    Article  Google Scholar 

  29. F. Kesisoglou, S. Panmai, Y. Wu, Adv. Drug Deliv. Rev. 59, 631–644 (2007)

    Article  Google Scholar 

  30. N. Rasenack, H. Hartenhauer, B. Muller, Int. J. Pharm. 254, 137–145 (2003)

    Article  Google Scholar 

  31. E. Merisko-Liversidge, G.G. Liversidge, E.R. Cooper, Eur. J. Pharm. Sci. 18, 113–120 (2003)

    Article  Google Scholar 

  32. E. Reverchon, J. Supercrit. Fluids 15, 1–21 (1999)

    Article  Google Scholar 

  33. J. Brouwers, M. Brewster, P. Augustijins, J. Pharm. Sci. 98, 2549–2572 (2009)

    Article  Google Scholar 

  34. C. Keck, B. Muller, Eur. J. Pharm. Biopharm. 62, 3–16 (2006)

    Article  Google Scholar 

  35. C.A. Lipinski, J. Pharmacol. Toxicol. Methods. 44, 235–249 (2000)

    Article  Google Scholar 

  36. C. A Lipinski, in Pharmaceutical Profiling in Drug Discovery for Lead Selection, ed. by R.T. Borchardt, E.H. Kerns, C.A. Lipinski, D.R. Thakker, B. Wang (American Association of Pharmaceutical Scientists, 2004), pp. 93–125

  37. S. Stegemann, F. Leveiller, D. Franchi, H. de Jong, H. Lindén, Eur. J. Pharm. Sci. 31, 249–261 (2007)

    Article  Google Scholar 

  38. B.C. Hancock, M. Parks, Pharm. Res. 17, 397–404 (2000)

    Article  Google Scholar 

  39. R. Meesata, H. Belmouaddine, J.-F. Allarda, C. Tanguay-Renaud, R. Lemay, T. Brastaviceanu, L. Tremblay, B. Paquette, J.R. Wagner, J.-P. Jay-Gerin, M. Lepage, M.A. Huels, D Houde, PNAS E2508–E2513 (2012)

Download references

Acknowledgments

The authors acknowledge J.-C. Leroux and J. Leblond for helpful discussions and access to experimental equipment, E. Nadezhina for the elemental analyses and Y. Drolet and J.-M. Rabanel for technical assistance. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes of Health Research (CIHR), the Groupe de Recherche Universitaire sur le Médicament (GRUM), the Fonds de la recherche en santé du Quebec (FRSQ) and the Canadian Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Meunier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 86 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, W., Sylvestre, JP., Bouvier, E. et al. Ultrafast laser processing of drug particles in water for pharmaceutical discovery. Appl. Phys. A 114, 267–276 (2014). https://doi.org/10.1007/s00339-013-8089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8089-1

Keywords

Navigation