Skip to main content
Log in

\(\mathcal{PT}\)-symmetric nonlinear metamaterials and zero-dimensional systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A one dimensional, parity-time (\(\mathcal{PT}\))-symmetric magnetic metamaterial comprising split-ring resonators having both gain and loss is investigated. In the linear regime, the transition from the exact to the broken \(\mathcal{PT}\)-phase is determined through the calculation of the eigenfrequency spectrum for two different configurations; the one with equidistant split-rings and the other with the split-rings forming a binary pattern (\(\mathcal{PT}\) dimer chain). The latter system features a two-band, gapped spectrum with its shape determined by the gain/loss coefficient as well as the interelement coupling. In the presence of nonlinearity, the \(\mathcal{PT}\) dimer chain configuration with balanced gain and loss supports nonlinear localized modes in the form of a novel type of discrete breathers below the lower branch of the linear spectrum. These breathers that can be excited from a weak applied magnetic field by frequency chirping, can be subsequently driven solely by the gain for very long times. The effect of a small imbalance between gain and loss is also considered. Fundamental gain-driven breathers occupy both sites of a dimer, while their energy is almost equally partitioned between the two split-rings, the one with gain and the other with loss. We also introduce a model equation for the investigation of classical \(\mathcal{PT}\) symmetry in zero dimensions, realized by a simple harmonic oscillator with matched time-dependent gain and loss that exhibits a transition from oscillatory to diverging motion. This behavior is similar to a transition from the exact to the broken \(\mathcal{PT}\) phase in higher-dimensional \(\mathcal{PT}\)-symmetric systems. A stability condition relating the parameters of the problem is obtained in the case of a piece-wise constant gain/loss function that allows the construction of a phase diagram with alternating stable and unstable regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V. Achilleos, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, Dark solitons and vortices in \(\mathcal{PT}\)-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear pt phase transitions. Phys. Rev. A 86, 013808 (2012) (7pp)

    Article  ADS  Google Scholar 

  2. N.V. Alexeeva, I.V. Barashenkov, A.A. Sukhorukov, Y.S. Kivshar, Optical solitons in pt-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012) (13pp)

    Article  ADS  Google Scholar 

  3. S.M. Anlage, The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011) (10pp)

    ADS  Google Scholar 

  4. I.V. Barashenkov, S.V. Suchkov, A.A. Sukhorukov, S.V. Dmitriev, Y.S. Kivshar, Breathers in pt-symmetric optical couplers. Phys. Rev. A 86, 053809 (2012) (12pp)

    Article  ADS  Google Scholar 

  5. A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser, V.N. Malnev, M. Noginov, Y.G. Rapoport, V.M. Shalaev, Active and tunable metamaterials. Laser Photonics Rev. 5(2), 287–307 (2010)

    Article  Google Scholar 

  6. S.V. Dmitriev, A.A. Sukhorukov, Y.S. Kivshar, Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 35, 2976–2978 (2010)

    Article  ADS  Google Scholar 

  7. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Theory of coupled optical pt-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

    Article  ADS  Google Scholar 

  8. L. Esaki, New phenomenon in narrow germanium pn junctions. Phys. Rep. 109, 603–605 (1958)

    Google Scholar 

  9. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Electromagnetic interaction of spit-ring resonators: the role of separation and relative orientation. Opt. Express 18, 6545–6554 (2010)

    Article  ADS  Google Scholar 

  10. S. Flach, A.V. Gorbach, Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  ADS  Google Scholar 

  11. A. Guo, Observation of pt-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  12. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwardds, E. Shamonina, Coupling mechanisms for split-ring resonators: theory and experiment. Phys. Status Solidi, B Basic Res. 244, 1170–1175 (2007)

    Article  ADS  Google Scholar 

  13. D.W. Hook, Non-hermittian potentials and real eigenvalues. Ann. Phys. (Berlin) 524(6–7), A106 (2012)

    Article  ADS  Google Scholar 

  14. T. Jiang, K. Chang, L.M. Si, L. Ran, H. Xin, Active microwave negative-index metamaterial transmission line with gain. Phys. Rev. Lett. 107, 205503 (2011)

    Article  ADS  Google Scholar 

  15. N. Lazarides, M. Eleftheriou, G.P. Tsironis, Discrete breathers in nonlinear magnetic metamaterials. Phys. Rev. Lett. 97, 157406 (2006) (4pp)

    Article  ADS  Google Scholar 

  16. N. Lazarides, M.I. Molina, G.P. Tsironis, Breather induction by modulational instability in binary metamaterials. Acta Phys. Pol. A 116(4), 635–637 (2009)

    ADS  Google Scholar 

  17. N. Lazarides, M.I. Molina, G.P. Tsironis, Breathers in one-dimensional binary metamaterial models. Physica B 405, 3007–3011 (2010)

    Article  ADS  Google Scholar 

  18. N. Lazarides, V. Paltoglou, G.P. Tsironis, Nonlinear magnetoinductive transmission lines. Int. J. Bifurc. Chaos 21, 2147–2156 (2011)

    Article  MATH  Google Scholar 

  19. N. Lazarides, G.P. Tsironis, Gain-driven discrete breathers in pt-symmetric nonlinear metamaterials. Phys. Rev. Lett. 110, 053901 (2013) (5pp)

    Article  ADS  Google Scholar 

  20. K. Li, P.G. Kevrekidis, Pt-symmetric oligomers: analytical solutions, linear stability, and nonlinear dynamics. Phys. Rev. E 83, 066608 (2011) (7pp)

    Article  ADS  Google Scholar 

  21. Z. Lin, H. Ramezani, T. Eichekraut, T. Kottos, H. Cao, D.N. Christodoulides, Unidirectional invisibility induced by pt-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011) (4pp)

    Article  ADS  Google Scholar 

  22. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Beam dynamics in pt-symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  23. A.E. Miroshnichenko, B.A. Malomed, Y.S. Kivshar, Nonlinearly pt-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123 (2011) (4pp)

    Article  ADS  Google Scholar 

  24. M.I. Molina, N. Lazarides, G.P. Tsironis, Bulk and surface magnetoinductive breathers in binary metamaterials. Phys. Rev. E 80, 046605 (2009)

    Article  ADS  Google Scholar 

  25. H. Ramezani, D.N. Christodoulides, V. Kovanis, I. Vitebskiy, T. Kottos, Pt-symmetric Talbot effects. Phys. Rev. Lett. 109, 033902 (2012)

    Article  ADS  Google Scholar 

  26. H. Ramezani, T. Kottos, R. El-Ganainy, D.N. Christodoulides, Unidirectional nonlinear pt-symmetric optical structures. Phys. Rev. A 82, 043803 (2010) (6pp)

    Article  ADS  Google Scholar 

  27. N.N. Rosanov, N.V. Vysotina, A.N. Shatsev, I.V. Shadrivov, D.A. Powell, Y.S. Kivshar, Discrete dissipative localized modes in nonlinear magnetic metamaterials. Opt. Express 19, 26500 (2011)

    Article  ADS  Google Scholar 

  28. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Observation of parity–time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  29. M. Sato, B.E. Hubbard, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Graighead, Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 90, 044102 (2003) (4pp)

    Article  ADS  Google Scholar 

  30. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with pt symmetries. Phys. Rev. A 84, 040101(R) (2011)

    Article  ADS  Google Scholar 

  31. I. Sersić, M. Frimmer, E. Verhagen, A.F. Koenderink, Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys. Rev. Lett. 103, 213902 (2009)

    Article  ADS  Google Scholar 

  32. L.M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, H. Xin, Active microwave metamaterials incorporating ideal gain devices. Materials 4, 73–83 (2011)

    Article  ADS  Google Scholar 

  33. S.V. Suchkov, B.A. Malomed, S.V. Dmitriev, Y.S. Kivshar, Solitons in a chain of parity-time invariant dimers. Phys. Rev. A 84, 046609 (2011)

    ADS  Google Scholar 

  34. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. Stevens, G. Faulkner, D. Edwards, L. Solymar, Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell. Phys. Rev. B 73, 224406 (2006)

    Article  ADS  Google Scholar 

  35. A. Szameit, M.C. Rechtsman, O. Bahat-Treidel, M. Segev, Pt-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011)

    Article  ADS  Google Scholar 

  36. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Nonlinear properties of split-ring resonators. Opt. Express 16, 16058 (2008)

    Article  ADS  Google Scholar 

  37. W. Xu, W.J. Padilla, S. Sonkusale, Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits. Opt. Express 20, 22406 (2012)

    Article  ADS  Google Scholar 

  38. D.A. Zezyulin, V.V. Konotop, Nonlinear modes in finite-dimensional pt-symmetric systems. Phys. Rev. Lett. 108, 213906 (2012) (5pp)

    Article  ADS  Google Scholar 

  39. N.I. Zheludev, The road ahead for metamaterials. Science 328, 582–583 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the European Union’s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under grant agreement no 316165, and by the Thales Project ANEMOS, cofinanced by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lazarides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsironis, G.P., Lazarides, N. \(\mathcal{PT}\)-symmetric nonlinear metamaterials and zero-dimensional systems. Appl. Phys. A 115, 449–458 (2014). https://doi.org/10.1007/s00339-013-8035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8035-2

Keywords

Navigation