Skip to main content

Advertisement

Log in

Towards controlled flyer acceleration by a laser-driven mini flyer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.L. Paisley, in Proc. APS SCCM (1989), p. 890812-21

    Google Scholar 

  2. C.W. Miller, H. Kishimura, S.C. Kelly, N. Thadhani, AIP Conf. Proc. 1195, 1147 (2009)

    Article  ADS  Google Scholar 

  3. R.J. Rowrence, W.M. Trott, Int. J. Impact Eng. 14, 439 (1993)

    Article  Google Scholar 

  4. D.L. Robbins, D.B. Stahl, S.A. Sheffield, D.J. Alexander, D.L. Paisley, A.M. Kelley, R.J. Hanrahan, R.C. Snow, R.J. Gehr, T.D. Rupp, S.M. Bucholtz Tech. Rep. LA-14150, Los Alamos National Laboratory (2004)

  5. X. Chen, H.X. Wang, J. Phys. D: Appl. Phys. 34, 2637 (2001)

    Article  ADS  Google Scholar 

  6. M.D. Bowden, S.L. Knowles, Proc. SPIE 7434, 743403 (2009)

    Article  Google Scholar 

  7. A.E. Chmel, Mater. Sci. Eng. B 49, 175 (1997)

    Article  Google Scholar 

  8. D.J. Hatt, J.A. Waschl, AIP Conf. Proc. 370, 1221 (1995)

    Article  ADS  Google Scholar 

  9. H.R. Brierley, D.M. Williamson, T.A. Vine, AIP Conf. Proc. 1426, 315 (2011)

    ADS  Google Scholar 

  10. M.W. Greenaway, W.G. Proud, J.E. Field, S.G. Goveas, Int. J. Impact Eng. 29, 317 (2003)

    Article  Google Scholar 

  11. I. Safi, Surf. Coat. Technol. 127, 203 (2000)

    Article  Google Scholar 

  12. D.B. Stahl, R.J. Gehr, R.W. Harper, T.D. Rupp, S.A. Sheffield, D.L. Robbins, AIP Conf. Proc. 505, 1087 (2000)

    Article  ADS  Google Scholar 

  13. F.M. White, Fluid Mechanics, 4th edn. (McGraw-Hill, New York, 1998), pp. 457–460

    Google Scholar 

  14. J.A. McMordie, P.D. Roberts, J. Phys. D: Appl. Phys. 8, 768 (1975)

    Article  ADS  Google Scholar 

  15. O. Benavides, O. Lebedeva, V. Golikov, Opt. Express 19, 21842 (2011)

    Article  ADS  Google Scholar 

  16. Y. Jamil, H. Saeed, M.R. Ahmad, S.A. Khan, H. Farooq, M. Shahid, K.M. Zia, N. Amin, Appl. Phys. A 110, 207 (2013)

    Article  ADS  Google Scholar 

  17. J.A. Fox, Appl. Phys. Lett. 24, 461 (1974)

    Article  ADS  Google Scholar 

  18. A.B. Gojani, J.J. Yoh, J.H. Yoo, Appl. Surf. Sci. 255, 2777 (2008)

    Article  ADS  Google Scholar 

  19. T.V. Chirila, I.J. Constable, P.P. van Saarloos, G.D. Barrett, Biomaterials 11, 305 (1989)

    Article  Google Scholar 

  20. Y.A. Cengel, Introduction to Thermodynamics and Heat Transfer, 2nd edn. (McGraw-Hill, Reno, 2008), p. 767

    Google Scholar 

  21. A.D. Rakic, Appl. Opt. 34, 4755 (1995)

    Article  ADS  Google Scholar 

  22. E.D. Palik, Handbook of Optical Constants of Solids II, 1st edn. (Academic, Boston, 1991)

    Google Scholar 

  23. V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, G. Pintsuk, J. Nucl. Mater. 407, 83 (2010)

    Article  ADS  Google Scholar 

  24. M.D. Podesta, Understanding the Properties of Matter, 2nd edn. (Taylor & Francis, London, 2002), pp. 354–355

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Foundation of Korea (DOYAK-2010 and NSL-2009) and Brain Korea 21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack J. Yoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Fedotov, V., Baek, W. et al. Towards controlled flyer acceleration by a laser-driven mini flyer. Appl. Phys. A 115, 971–978 (2014). https://doi.org/10.1007/s00339-013-7916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7916-8

Keywords

Navigation