Skip to main content
Log in

Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.D. Zakharov, V.G. Talalaev, P. Werner, A.A. Tonkikh, G.E. Cirlin, Appl. Phys. Lett. 83, 3084 (2003)

    Article  ADS  Google Scholar 

  2. Y.M. Niquet, G. Allan, C. Delerue, M. Lanoo, Appl. Phys. Lett. 77, 1182 (2000)

    Article  ADS  Google Scholar 

  3. Y.-H. Kuo, Y.-S. Li, Appl. Phys. Lett. 94, 121101 (2009)

    Article  ADS  Google Scholar 

  4. G.E. Cirlin, V.G. Talalaev, V.A. Egorov, N.D. Zakharov, P. Werner, N.N. Ledentsov, V.M. Ustinov, Physica E 17, 131 (2003)

    Article  ADS  Google Scholar 

  5. M.W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, O.G. Schmidt, Appl. Phys. Lett. 80, 1279 (2002)

    Article  ADS  Google Scholar 

  6. U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, E. Kasper, Phys. Rev. B 47, 4099 (1993)

    Article  ADS  Google Scholar 

  7. W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010)

    Article  ADS  Google Scholar 

  8. J. Liu, X. Sun, D. Pan, X. Wang, L.C. Kimerlang, T.L. Koch, J. Michel, Opt. Express 15, 11272 (2007)

    Article  ADS  Google Scholar 

  9. V.G. Talalaev, G.E. Cirlin, A.A. Tonkikh, N.D. Zakharov, P. Werner, U. Gösele, J.W. Tomm, T. Elsaesser, Nanoscale Res. Lett. 1, 137 (2006)

    Article  ADS  Google Scholar 

  10. S. Kalem, O. Yavuzcetin, Opt. Express 6, 7 (2000)

    Article  ADS  Google Scholar 

  11. P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, U. Gösele, Int. J. Mater. Res. 97, 7 (2006)

    Google Scholar 

  12. E.S. Kooij, K. Butter, J.J. Kelly, Electrochem. Solid State Lett. 2, 178 (1999)

    Article  Google Scholar 

  13. E.Ö. Sveinbjörnsson, J. Weber, Thin Solid Films 294, 201 (1997)

    Article  ADS  Google Scholar 

  14. K. Bothe, R.J. Folster, J.D. Murphy, Appl. Phys. Lett. 101, 032107 (2012)

    Article  ADS  Google Scholar 

  15. M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, J. Appl. Phys. 111, 113523 (2012)

    Article  ADS  Google Scholar 

  16. S. Kalem, P. Werner, B. Nilsson, V. Talalaev, M. Hagberg, O. Arthursson, U. Sodervall, Nanotechnology 20, 445303 (2009)

    Article  ADS  Google Scholar 

  17. H. Cui, C.X. Wang, G.W. Yang, Nano Lett. 8, 2731 (2008)

    Article  ADS  Google Scholar 

  18. C.T. Kirk, Phys. Rev. B 38, 1255 (1988)

    Article  ADS  Google Scholar 

  19. R. Chivas, S. Yerci, R. Li, L. Dal Negro, T. Morse, Opt. Mater. 33, 1829 (2011)

    Article  ADS  Google Scholar 

  20. S. Kalem, Ö. Arthursson, I. Romandic, Thin Solid Films 518, 2377 (2010)

    Article  ADS  Google Scholar 

  21. S.H. Choi, H.Y. Kim, Y.-K. Hong, J.-Y. Koo, J. Seok, J. Kim, J. Korean Phys. Soc. 42, S120 (2003)

    Google Scholar 

  22. L. Tsybeskov, K.L. Moore, D.G. Hall, P.M. Fauchet, Phys. Rev. B 54, R8361 (1996)

    Article  ADS  Google Scholar 

  23. I. Tarasov, S. Ostapenko, C. Haessler, E.U. Reisner, Mater. Sci. Eng. B 71, 51 (2000)

    Article  Google Scholar 

  24. O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc, P. Gentile, P. Ferret, T. Baron, N. Magnea, Physica E 41, 963 (2009)

    Article  ADS  Google Scholar 

  25. D.J. Stowe, S.A. Galloway, S. Senkader, K. Mallik, J. Falster, P.R. Wilshaw, Physica B 340–342, 710 (2003)

    Article  Google Scholar 

  26. K.W. Sun, S.H. Sue, C.W. Liu, Physica E 28, 525 (2005)

    Article  ADS  Google Scholar 

  27. G. Jia, M. Kittler, Z. Su, D. Yang, J. Sha, Phys. Status Solidi A 203, R55 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the TUBITAK (TBAG) bilateral program under Contract No. 107T624 and the BMBF German Federal Ministry of Education and Research (Grant No. 03Z2HN12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seref Kalem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalem, S., Werner, P. & Talalaev, V. Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment. Appl. Phys. A 112, 561–567 (2013). https://doi.org/10.1007/s00339-013-7783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7783-3

Keywords

Navigation