Skip to main content
Log in

Enhanced light trapping for the silver nanoparticles embedded in the silica layer atop the silicon substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical properties of the structures with silver nanoparticles embedded in the silica layer atop the silicon substrate are simulated by the finite-difference time-domain method. The effects of nanoparticle size, period, silica layer thickness, and the angle of incidence of the illuminated light on optical transmissions are studied. It is found that there is the red-shift for the maximum of the total light transmitting into the silicon substrate as the silica layer thickness increases. The electric field intensity distributions and the average power densities for the structure with largest optical transmission is studied, and the strong electric field intensities are found in the silica regions surrounding to the silver nanoparticles, which can help the light energy going into the silicon substrate. By controlling the structure parameters, the optical transmissions of the structures with the silica layer can have higher optical transmissions than the cases without the silica layer. The silica layer plays the role as the graded refractive index layer between the air and the silicon substrate, and the light power from the incident wave can transmit into the silicon substrate with less optical reflections for choosing a suitable silica layer thickness. A guideline to design the structures with high optical transmissions for the solar spectra is given. This study cannot only be useful for the solar cells applications, but also other antireflection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.R. Catchploe, A. Polman, Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)

    Article  ADS  Google Scholar 

  2. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  ADS  Google Scholar 

  3. A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J. van de Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 92(1), 013504 (2008)

    Article  ADS  Google Scholar 

  4. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 93(7), 073307 (2008)

    Article  ADS  Google Scholar 

  5. Z. Sun, X. Zuo, Y. Yang, Role of surface metal nanoparticles on the absorption in solar cells. Opt. Lett. 4(37), 641–643 (2012)

    Article  ADS  Google Scholar 

  6. K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 93(12), 121904 (2008)

    Article  ADS  Google Scholar 

  7. Y.A. Akimov, W.S. Koh, K. Ostrikov, Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt. Express 17(12), 10195–10205 (2009)

    Article  ADS  Google Scholar 

  8. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11(4), 1760–1765 (2011)

    Article  ADS  Google Scholar 

  9. S. Pillai, F.J. Beck, K.R. Catchpole, Z. Ouyang, M.A. Green, The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J. Appl. Phys. 109(7), 073105 (2011)

    Article  ADS  Google Scholar 

  10. W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, Surface plasmon enhanced GaAs thin film solar cells. Sol. Energy Mater. Sol. Cells 95(4), 693–698 (2011)

    Google Scholar 

  11. X. Li, N.P. Hylton, V. Giannini, K.H. Lee, N.J.E. Daukes, S.A. Maier, Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. Opt. Express 19(54), A888–A896 (2011)

    Article  ADS  Google Scholar 

  12. P. Matheu, S.H. Lim, D. Derkacs, C. McPheeters, E.T. Yu, Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 93(11), 113108 (2008)

    Article  ADS  Google Scholar 

  13. D. Derkacs, W.V. Chen, P.M. Matheu, S.H. Lim, P.K.L. Yu, E.T. Yu, Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl. Phys. Lett. 93(9), 091107 (2008)

    Article  ADS  Google Scholar 

  14. C.K. Huang, H.H. Lin, J.Y. Chen, K.W. Sun, W.-L. Chang, Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles. Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011)

    Article  Google Scholar 

  15. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, P. Peumans, Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl. Phys. Lett. 96(13), 133302 (2010)

    Article  ADS  Google Scholar 

  16. Z. Yu, A. Raman, S. Fan, Fundamental limit of light trapping in grating structures. Opt. Express 18(S3), A366–A380 (2010)

    Article  ADS  Google Scholar 

  17. R. Dewan, D. Knipp, Light trapping in thin-film silicon solar cells with integrated diffraction grating. J. Appl. Phys. 106(7), 074901 (2009)

    Article  ADS  Google Scholar 

  18. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, M.-L. Wu, Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Opt. Express 16(11), 7969–7975 (2008)

    Article  ADS  Google Scholar 

  19. S. Xiao, E. Stassen, N.A. Mortensen, Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures. J. Nanophotonics 6(1), 061503 (2012)

    Article  Google Scholar 

  20. D. Qu, F. Liu, J. Yu, W. Xie, Q. Xu, X. Li, Y. Huang, Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl. Phys. Lett. 98(11), 113119 (2011)

    Article  ADS  Google Scholar 

  21. Y.A. Akimov, W.S. Koh, Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1), 155–161 (2011)

    Article  Google Scholar 

  22. R. Xu, X. Wang, W. Liu, L. Song, X. Xu, A. Ji, F. Yang, J. Li, Optimization of the dielectric layer thickness for surface-plasmon-induced light absorption for silicon solar cells. J. Appl. Phys. 51(4), 042301 (2012)

    Google Scholar 

  23. S.E. Han, G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10(3), 1012–1015 (2010)

    Article  ADS  Google Scholar 

  24. K.-Q. Peng, S.-T. Lee, Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23(2), 198–215 (2011)

    Article  Google Scholar 

  25. Y.-M. Yeh, Y.-S. Wang, J.-H. Li, Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate. Opt. Express 19(52), A80–A94 (2011)

    Article  ADS  Google Scholar 

  26. M. Yang, J. Li, J. Li, X. Zhu, Scattering of light by plasmonic nanoparticles on a silicon substrate. Chem. Phys. Chem. 13, 2573–2577 (2012)

    Article  Google Scholar 

  27. S. Bastide, T. Nychyporuk, Z. Zhou, A. Fave, M. Lemiti, Facile metallization of dielectric coatings for plasmonic solar cells. Sol. Energy Mater. Sol. Cells 102, 26–30 (2012)

    Article  Google Scholar 

  28. Lumerical FDTD Solution. http://www.lumerical.com/

  29. Reference solar spectral irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/

  30. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985)

    Google Scholar 

  31. W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 93th edn. (2012–2013)

    Google Scholar 

  32. Z.B. Wang, W. Guo, B. Luk’yanchuk, D.J. Whitehead, L. Li, Z. Liu, Optical near-field interaction between neighbouring micro/nano-particles. J. Laser Micro Nanoeng. 3(1), 14–18 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of Taiwan (NSC 100-2221-E-002-155) and NTU Career Development Project (101R7816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Han Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, HY., Chen, SW., Lin, IB. et al. Enhanced light trapping for the silver nanoparticles embedded in the silica layer atop the silicon substrate. Appl. Phys. A 112, 525–532 (2013). https://doi.org/10.1007/s00339-013-7755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7755-7

Keywords

Navigation