Skip to main content
Log in

Persistent luminescence properties of SrMg2(PO4)2:Eu2+,Tb3+

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the persistent luminescence in europium-doped SrMg2(PO4)2 upon codoping with auxiliary terbium. Luminescence properties of the phosphors, including photoluminescence, luminescence decay and thermoluminescence, are systematically studied. SrMg2(PO4)2:Eu2+ shows only a weak persistent luminescence, and codoping with Tb3+ is necessary to obtain considerable persistent luminescence. An energy level scheme is constructed to convey reasonable trapping and detrapping processes in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Van den Eeckhout, P.F. Smet, D. Poelman, Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536–2566 (2010)

    Article  ADS  Google Scholar 

  2. H.F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, L.C.V. Rodrigues, Persistent luminescence mechanisms: human imagination at work. Opt. Mater. Express 2, 371–381 (2012)

    Article  Google Scholar 

  3. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+. J. Phys. Chem. B 110, 4589–4598 (2006)

    Article  Google Scholar 

  4. Q.L. de Chermont, C. Chaneac, J. Seguin, F. Pelle, S. Maitrejean, J.P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007)

    Article  ADS  Google Scholar 

  5. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011)

    Article  Google Scholar 

  6. Z. Pan, Y.Y. Lu, F. Liu, Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2011)

    Article  ADS  Google Scholar 

  7. P.F. Smet, K. Van den Eeckhout, A.J.J. Bos, E. van der Kolk, P. Dorenbos, Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors. J. Lumin. 132, 682–689 (2012)

    Article  Google Scholar 

  8. J. Trojan-Piegza, J. Niittykoski, J. Hölsä, E. Zych, Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials. Chem. Mater. 20, 2252–2261 (2008)

    Article  Google Scholar 

  9. J. Wang, S. Wang, Q. Su, Synthesis, photoluminescence and thermostimulated-luminescence properties of novel red long-lasting phosphorescent materials β-Zn3(PO4)2:Mn2+,M3+ (M = Al and Ga). J. Mater. Chem. 14, 2569–2574 (2004)

    Article  Google Scholar 

  10. B.-Y. Wu, H.-F. Wang, J.-T. Chen, X.-P. Yan, Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686–688 (2010)

    Article  Google Scholar 

  11. T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996)

    Article  Google Scholar 

  12. L.C.V. Rodrigues, H.F. Brito, J. Hölsä, R. Stefani, M.C.F.C. Felinto, M. Lastusaari, T. Laamanen, L.A.O. Nunes, Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+. J. Phys. Chem. C 116, 11232–11240 (2012)

    Article  Google Scholar 

  13. P. Dorenbos, Locating lanthanide impurity levels in the forbidden band of host crystals. J. Lumin. 108, 301–305 (2004)

    Article  Google Scholar 

  14. P. Dorenbos, Electronic structure engineering of lanthanide activated materials. J. Mater. Chem. 22, 22344–22349 (2012)

    Article  Google Scholar 

  15. P. Dorenbos, Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417 (2003)

    Article  ADS  Google Scholar 

  16. J.F. Sarver, M.V. Hoffman, F.A. Hummel, Phase equilibria and tin-activated luminescence in strontium orthophosphate systems. J. Electrochem. Soc. 108, 1103–1110 (1961)

    Article  Google Scholar 

  17. L. Liu, C. Li, S. Wang, Q. Su, Redshift phenomenon of the excitation light of long life emission phosphor. Appl. Phys. Lett. 88, 241107 (2006)

    Article  ADS  Google Scholar 

  18. L. Liu, R. Pang, C. Li, Q. Su, Effects of distorted lattice and nonequal-valence substitution on the long lasting phosphorescence of Eu2+ and Gd3+ doped RMg2(PO4)2 (R = Sr,Ba) phosphors. J. Appl. Phys. 108, 043101 (2010)

    Article  ADS  Google Scholar 

  19. G. Ju, Y. Hu, L. Chen, X. Wang, Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+. J. Appl. Phys. 111, 113508 (2012)

    Article  ADS  Google Scholar 

  20. B. ElBali, A. Boukhari, E. Holt, J. Aride, Strontium dicobalt orthophosphate. J. Crystallogr. Spectrosc. Res. 23, 1001–1004 (1993)

    Article  Google Scholar 

  21. P. Dorenbos, Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+. Phys. Status Solidi B 242, R7–R9 (2005)

    Article  ADS  Google Scholar 

  22. P. Dorenbos, Valence stability of lanthanide ions in inorganic compounds. Chem. Mater. 17, 6452–6456 (2005)

    Article  Google Scholar 

  23. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+. J. Chem. Phys. 49, 4447–4449 (1968)

    Article  ADS  Google Scholar 

  24. Z. Zhang, J. Wang, M. Zhang, Q. Zhang, Q. Su, The energy transfer from Eu2+ to Tb3+ in calcium chlorapatite phosphor and its potential application in LEDs. Appl. Phys. B 91, 529–537 (2008)

    Article  ADS  Google Scholar 

  25. W. Lü, Z. Hao, X. Zhang, Y. Luo, X. Wang, J. Zhang, Tunable full-color emitting BaMg2Al6Si9O30:Eu2+,Tb3+,Mn2+ phosphors based on energy transfer. Inorg. Chem. 50, 7846–7851 (2011)

    Article  Google Scholar 

  26. J. Zhou, Z. Xia, H. You, K. Shen, M. Yang, L. Liao, Synthesis and tunable luminescence properties of Eu2+ and Tb3+-activated Na2Ca4(PO4)3F phosphors based on energy transfer. J. Lumin. 135, 20–25 (2013)

    Article  Google Scholar 

  27. J. Wang, Z. Zhang, M. Zhang, Q. Zhang, Q. Su, J. Tang, The energy transfer from Eu2+ to Tb3+ in Ca10K(PO4)7 and its application in green light emitting diode. J. Alloys Compd. 488, 582–585 (2009)

    Article  Google Scholar 

  28. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+. J. Chem. Phys. 49, 4450–4455 (1968)

    Article  ADS  Google Scholar 

  29. G. Blasse, A. Bril, Fluorescence of Eu3+-activated sodium lanthanide titanates (NaLn1−x Eu x TiO4). J. Chem. Phys. 48, 3652–3656 (1968)

    Article  ADS  Google Scholar 

  30. G. Blasse, A. Bril, W.C. Nieuwpoort, On the Eu3+ fluorescence in mixed metal oxides: part I—the crystal structure sensitivity of the intensity ratio of electric and magnetic dipole emission. J. Phys. Chem. Solids 27, 1587–1592 (1966)

    Article  ADS  Google Scholar 

  31. D. Poelman, N. Avci, P.F. Smet, Measured luminance and visual appearance of multi-color persistent phosphors. Opt. Express 17, 358–364 (2009)

    Article  ADS  Google Scholar 

  32. D. Poelman, P.F. Smet, Photometry in the dark: time dependent visibility of low intensity light sources. Opt. Express 18, 26293–26299 (2010)

    Article  ADS  Google Scholar 

  33. D. Poelman, P.F. Smet, Photometry in the dark: time dependent visibility of low intensity light sources: erratum. Opt. Express 19, 18808–18809 (2011)

    Article  ADS  Google Scholar 

  34. H. Kubo, H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, Characteristics of long afterglow phosphorescent calcium aluminate crystals for fluorescence thermometer application. J. Cryst. Growth 275, e1767–e1771 (2005)

    Article  ADS  Google Scholar 

  35. R. Sakai, T. Katsumata, S. Komuro, T. Morikawa, Effect of composition on the phosphorescence from BaAl2O4:Eu2+,Dy3+ crystals. J. Lumin. 85, 149–154 (1999)

    Article  Google Scholar 

  36. L.C.V. Rodrigues, H.F. Brito, J. Hölsä, M. Lastusaari, Persistent luminescence behavior of materials doped with Eu2+ and Tb3+. Opt. Mater. Express 2, 382–390 (2012)

    Article  Google Scholar 

  37. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, New York, 1985), p. 64

    Book  Google Scholar 

  38. C.S. Shalgaonkar, A.V. Narlikar, Review: a review of the recent methods for determining trap depth from glow curves. J. Mater. Sci. 7, 1465–1471 (1972)

    Article  ADS  Google Scholar 

  39. P.F. Smet, N. Avci, D. Poelman, Red persistent luminescence in Ca2SiS4:Eu,Nd. J. Electrochem. Soc. 156, H243–H248 (2009)

    Article  Google Scholar 

  40. P. Dorenbos, The charge transfer energy and the relation with the band gap of compounds. J. Lumin. 111, 89–104 (2005)

    Article  Google Scholar 

  41. X. Yu, X. Xu, P. Yang, Z. Yang, Z. Song, D. Zhou, Z. Yin, Q. Jiao, J. Qiu, Photoluminescence properties and the self-reduction process of CaAl2Si2O8:Eu phosphor. Mater. Res. Bull. 47, 117–120 (2012)

    Article  Google Scholar 

  42. Z. Pei, Q. Su, J. Zhang, The valence change from RE3+ to RE2+ (RE = Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+. J. Alloys Compd. 198, 51–53 (1993)

    Article  Google Scholar 

  43. M. Peng, Z. Pei, G. Hong, Q. Su, The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor. J. Mater. Chem. 13, 1202–1205 (2003)

    Article  Google Scholar 

  44. P. Dorenbos, Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239–260 (2003)

    Article  Google Scholar 

  45. P. Dorenbos, f→d transition energies of divalent lanthanides in inorganic compounds. J. Phys. Condens. Matter 15, 575 (2003)

    Article  ADS  Google Scholar 

  46. S. Carlson, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, R. Valtonen, X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. Opt. Mater. 31, 1877–1879 (2009)

    Article  ADS  Google Scholar 

  47. A.J.J. Bos, R.M. van Duijvenvoorde, E. van der Kolk, W. Drozdowski, P. Dorenbos, Thermoluminescence excitation spectroscopy: a versatile technique to study persistent luminescence phosphors. J. Lumin. 131, 1465–1471 (2011)

    Article  Google Scholar 

  48. Y. Li, Y. Wang, Y. Gong, X. Xu, F. Zhang, Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation. Acta Mater. 59, 3174–3183 (2011)

    Article  Google Scholar 

  49. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, P.F. Smet, Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes. Phys. Rev. B 84, 085140 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21271049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, G., Hu, Y., Chen, L. et al. Persistent luminescence properties of SrMg2(PO4)2:Eu2+,Tb3+ . Appl. Phys. A 114, 867–874 (2014). https://doi.org/10.1007/s00339-013-7716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7716-1

Keywords

Navigation