Skip to main content
Log in

Synthesis of rGO–Ag nanoparticles for high-performance SERS and the adsorption geometry of 2-mercaptobenzimidazole on Ag surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The sliver nanoparticles (AgNPs) with diameters of 30∼50 nm were self-assembled onto the surfaces of reduced graphene oxide (rGO) sheets simply by mixing AgNO3 aqueous solution and GO dispersion via a synchronous reduction process. Structure and morphology of the rGO–AgNPs hybrids were well characterized. More significantly, the surface-enhanced Raman scattering (SERS) spectrum of 2-mercaptobenzimidazole (MBI) adsorbed on the solid rGO–AgNPs surface shown that the rGO–AgNPs system gives a very strong SERS intensity at in-plane vibrational modes in comparison to the out-of-plane vibrational modes. This large enhancement effect is most likely a result of charge-transfer (CT) mechanism. Based on the surface selection rules and the information provided by the highly enhanced in-plane vibrational modes, it can be found that MBI molecule was adsorbed on AgNPs surface as a thiol form via the sulphur and nitrogen atoms with a slightly tilted geometric conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Biosens. Bioelectron. 25, 901 (2009)

    Article  Google Scholar 

  3. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    Article  ADS  Google Scholar 

  4. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nanotechnol. 2, 605 (2007)

    Article  ADS  Google Scholar 

  5. Y.L. Hsin, K.C. Hwang, C.T. Yeh, J. Am. Chem. Soc. 129, 9999 (2007)

    Article  Google Scholar 

  6. W. Xie, P.H. Qiu, C.B. Mao, J. Mater. Chem. 21, 5190 (2011)

    Article  Google Scholar 

  7. S.M. Ngola, J.W. Zhang, B.L. Mitchell, N. Sundararajan, J. Raman Spectrosc. 39, 611 (2008)

    Article  ADS  Google Scholar 

  8. Y. Sun, B. Wiley, Z.Y. Li, Y. Xia, J. Am. Chem. Soc. 126, 9399 (2004)

    Article  Google Scholar 

  9. H. Wei, H. Xu, Appl. Phys. A, Mater. Sci. Process. 89, 273 (2007)

    Article  ADS  Google Scholar 

  10. H. Zhao, H.G. Fu, T.S. Zhao, L. Wang, T.X. Tan, J. Colloid Interface Sci. 375, 30 (2012)

    Article  Google Scholar 

  11. M. Yu, P.R. Liu, S.L. Zhang, J.H. Liu, J.W. An, Mater. Res. Bull. 47, 3206 (2012)

    Article  Google Scholar 

  12. S.J. He, K.K. Liu, S. Su, J. Yan, X.H. Mao, D.F. Wang, Y. He, L.J. Li, S.P. Song, C.H. Fan, Anal. Chem. 84, 4622 (2012)

    Article  Google Scholar 

  13. G. Braun, S.J. Lee, M. Dante, T.Q. Nguyen, M. Moskovits, N. Reich, J. Am. Chem. Soc. 129, 6378 (2007)

    Article  Google Scholar 

  14. H.W. Liu, L. Zhang, X.Y. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q.K. Xue, M.W. Chen, Nature 112, 1 (2011)

    Article  Google Scholar 

  15. W. Ren, Y.X. Fang, E.K. Wang, ACS Nano 5, 6425 (2011)

    Article  Google Scholar 

  16. H. Zhao, H.G. Fu, C.G. Tian, Z.Y. Ren, G.H. Tian, J. Colloid Interface Sci. 351, 343 (2010)

    Article  Google Scholar 

  17. Y.J. Liu, Z.Y. Zhang, R.A. Dluhy, Y.P. Zhao, J. Raman Spectrosc. 41, 1112 (2010)

    Article  ADS  Google Scholar 

  18. B. Pergolese, M.M. Miranda, A. Bigotto, J. Mol. Struct. 924, 559 (2009)

    Article  ADS  Google Scholar 

  19. X.P. Gao, P.D. John, J.W. Michael, J. Phys. Chem. 94, 6858 (1990)

    Article  Google Scholar 

  20. M. Moskovits, J.S. Suh, J. Phys. Chem. 88, 5526 (1984)

    Article  Google Scholar 

  21. G. Xue, Y. Lu, Langmuir 10, 967 (1994)

    Article  Google Scholar 

  22. W. Hummers, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  23. K. Vinodgopal, B. Neppolian, I.V. Lightcap, F. Grieser, M. Ashokkumar, P.V. Kamat, J. Phys. Chem. Lett. 1, 1987 (2010)

    Article  Google Scholar 

  24. Y.W. Zhu, M.D. Stoller, W.W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1227 (2010)

    Article  Google Scholar 

  25. X.Y. Peng, X.X. Liu, D. Diamond, K.T. Lau, Carbon 49, 3488 (2011)

    Article  Google Scholar 

  26. W. Wang, J.C. Cui, W.L. Fan, Z.Y. Feng, X.C. Ma, W. Jiang, Mater. Lett. 84, 120 (2012)

    Article  Google Scholar 

  27. G.I. Titelman, V. Gelman, S. Bron, R.L. Khalfin, Y. Cohen, Carbon 43, 641 (2005)

    Article  Google Scholar 

  28. J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Adv. Mater. 22, 1 (2010)

    Article  Google Scholar 

  29. P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Nanotechnology 22, 055705 (2011)

    Article  ADS  Google Scholar 

  30. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  31. Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Nano Lett. 7, 2758 (2007)

    Article  ADS  Google Scholar 

  32. C. Wu, Q.Y. Cheng, S.Q. Sun, B.H. Han, Carbon 50, 1083 (2012)

    Article  Google Scholar 

  33. T. Doneux, F. Tielens, P. Geerlings, C.B. Herman, J. Phys. Chem. A, Mol. Spectrosc. Kinet. Environ. Gen. Theory 110, 11346 (2006)

    Google Scholar 

  34. A. Bigotto, B. Pergolese, J. Raman Spectrosc. 32, 953 (2001)

    Article  ADS  Google Scholar 

  35. A.K. Rai, R. Singh, K.N. Singh, V.B. Singh, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 63, 483 (2006)

    Article  ADS  Google Scholar 

  36. M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, J. Phys. Chem. 98, 12702 (1994)

    Article  Google Scholar 

  37. Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 106, 9463 (2002)

    Article  Google Scholar 

  38. J.F. Arenas, I.L. Tocon, J.L. Castro, S.P. Centeno, M.R.L. Ramırez, J.C. Otero, J. Raman Spectrosc. 36, 515 (2005)

    Article  ADS  Google Scholar 

  39. M. Moskovits, J. Raman Spectrosc. 36, 385 (2005)

    Article  Google Scholar 

  40. B. Cui, T. Chen, D. Wang, L.J. Wan, Langmuir 27, 7614 (2011)

    Article  Google Scholar 

  41. S.Q. Sun, Y.F. Geng, L. Tian, S.H. Chen, Y.G. Yan, S.Q. Hu, Corros. Sci. 63, 140 (2012)

    Article  Google Scholar 

  42. T. Doneux, C.B. Herman, J. Lipkowski, J. Electroanal. Chem. 564, 65 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from Graduate Innovation Fund of Shanghai University (No. SHUCX120051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H.L., Yang, S.S., Zhao, J. et al. Synthesis of rGO–Ag nanoparticles for high-performance SERS and the adsorption geometry of 2-mercaptobenzimidazole on Ag surface. Appl. Phys. A 114, 801–808 (2014). https://doi.org/10.1007/s00339-013-7659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7659-6

Keywords

Navigation