Skip to main content
Log in

Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004)

    Article  ADS  Google Scholar 

  2. W. Fuller Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  3. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A 240(826), 599–642 (1948)

    Article  ADS  MATH  Google Scholar 

  4. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(12), L1–L7 (1996)

    Article  ADS  Google Scholar 

  5. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  6. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)

    Article  ADS  Google Scholar 

  7. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  8. T. Kimura, Y. Otani, J. Hamrle, Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006)

    Article  ADS  Google Scholar 

  9. J.I. Martn, J. Nogus, K. Liu, J.L. Vicent, I.K. Schuller, Ordered magnetic nanostructures: fabrication and properties. J. Magn. Magn. Mater. 256(13), 449–501 (2003)

    Article  ADS  Google Scholar 

  10. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  Google Scholar 

  11. R.P. Cowburn, M.E. Welland, Room temperature magnetic quantum cellular automata. Science 287(5457), 1466–1468 (2000)

    Article  ADS  Google Scholar 

  12. R.P. Cowburn, Magnetic nanodots for device applications. J. Magn. Magn. Mater. 242–245(Part 1), 505–511 (2002)

    Article  Google Scholar 

  13. K.M. Krishnan, Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46(7), 2523–2558 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnr, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001)

    Article  ADS  Google Scholar 

  15. C.A. Ross, Patterned magnetic recording media. Annu. Rev. Mater. Res. 31(1), 203–235 (2001)

    Article  ADS  Google Scholar 

  16. B.D. Terris, T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D, Appl. Phys. 38(12), R199 (2005)

    Article  ADS  Google Scholar 

  17. H.J. Richter, A.Y. Dobin, K. Gao, O. Heinonen, R.J. Van de Veerdonk, R.T. Lynch, J. Xue, D.K. Weller, P. Asselin, M.F. Erden, R.M. Brockie, Recording on bit-patterned media at densities of 1tb/in2 and beyond, in IEEE International Magnetics Conference, INTERMAG 2006, May (2006), p. 721

    Chapter  Google Scholar 

  18. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 85, 5828–5833 (1999)

    Article  ADS  Google Scholar 

  19. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)

    Article  ADS  Google Scholar 

  20. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)

    Article  ADS  Google Scholar 

  21. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081), 555–558 (2012)

    Article  ADS  Google Scholar 

  22. A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  ADS  Google Scholar 

  23. D.B. Carlton, N.C. Emley, E. Tuchfeld, J. Bokor, Simulation studies of nanomagnet-based logic architecture. Nano Lett. 8(12), 4173–4178 (2008)

    Article  ADS  Google Scholar 

  24. B. Lambson, D. Carlton, J. Bokor, Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107, 010604 (2011)

    Article  ADS  Google Scholar 

  25. B. Behin-Aein, D. Datta, S. Salahuddin, S. Datta, Nature Nanotech., 266–270 (2010). doi:10.1038/nnano.2010.31

  26. R.P. Cowburn, A. Ercole, S.J. Gray, J.A.C. Bland, A new technique for measuring magnetic anisotropies in thin and ultrathin films by magneto-optics. J. Appl. Phys. 81(10), 6879–6883 (1997)

    Article  ADS  Google Scholar 

  27. D.A. Allwood, G. Xiong, M.D. Cooke, R.P. Cowburn, Magneto-optical Kerr effect analysis of magnetic nanostructures. J. Phys. D, Appl. Phys. 36(18), 2175 (2003)

    Article  ADS  Google Scholar 

  28. R.P. Cowburn, A.O. Adeyeye, M.E. Welland, Configurational anisotropy in nanomagnets. Phys. Rev. Lett. 81, 5414–5417 (1998)

    Article  ADS  Google Scholar 

  29. R.P. Cowburn, Property variation with shape in magnetic nanoelements. J. Phys. D, Appl. Phys. 33(1), R1 (2000)

    Article  ADS  Google Scholar 

  30. P. Vavassori, D. Bisero, F. Carace, A. di Bona, G.C. Gazzadi, M. Liberati, S. Valeri, Interplay between magnetocrystalline and configurational anisotropies in Fe(001) square nanostructures. Phys. Rev. B 72, 054405 (2005)

    Article  ADS  Google Scholar 

  31. R.P. Cowburn, M.E. Welland, Micromagnetics of the single-domain state of square ferromagnetic nanostructures. Phys. Rev. B 58, 9217–9226 (1998)

    Article  ADS  Google Scholar 

  32. D.K. Koltsov, M.E. Welland, Control of micromagnetics in permalloy nanomagnets by means of indentation. J. Appl. Phys. 94(5), 3457–3461 (2003)

    Article  ADS  Google Scholar 

  33. F. Lee, Shape-induced biaxial anisotropy in thin magnetic films. IEEE Trans. Magn. 4(3), 502–506 (1968)

    Article  ADS  Google Scholar 

  34. M.J. Donahue, D.G. Porter, Oommf user’s guide, version 1.0. Technical report, National Institute of Standards and Technology, Gaithersburg, MD (1999)

  35. A. Kozhanov, S.J. Allen, Nanomagnetic triangles for a non-volatile logic applications, in APS Meeting Abstracts, February (2012), p. 15003

    Google Scholar 

  36. S. Liu, X.S. Hu, J.J. Nahas, M.T. Niemier, W. Porod, G.H. Bernstein, Magnetic x2013; electrical interface for nanomagnet logic. IEEE Trans. Nanotechnol. 10(4), 757–763 (2011)

    Article  ADS  Google Scholar 

  37. M.T. Niemier, G.H. Bernstein, G. Csaba, A. Dingler, X.S. Hu, S. Kurtz, S. Liu, J. Nahas, W. Porod, M. Siddiq, E. Varga, Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23(49), 493202 (2011)

    Article  Google Scholar 

  38. M.T. Niemier, X.S. Hu, M. Alam, G. Bernstein, W. Porod, M. Putney, J. DeAngelis, Clocking structures and power analysis for nanomagnet-based logic devices, in ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED) (2007), pp. 26–31

    Google Scholar 

  39. F.M. Spedalieri, A.P. Jacob, D.E. Nikonov, V.P. Roychowdhury, Performance of magnetic quantum cellular automata and limitations due to thermal noise. IEEE Trans. Nanotechnol. 10(3), 537–546 (2011)

    Article  ADS  Google Scholar 

  40. D. Carlton, B. Lambson, A. Scholl, A. Young, P. Ashby, S. Dhuey, J. Bokor, Investigation of defects and errors in nanomagnetic logic circuits. IEEE Trans. Nanotechnol. 11(4), 760–762 (2012)

    Article  ADS  Google Scholar 

  41. D. Carlton, B. Lambson, A. Scholl, A. Young, P. Ashby, S. Dhuey, E. Tuchfeld, J. Bokor, Computing in thermal equilibrium with dipole-coupled nanomagnets. IEEE Trans. Nanotechnol. 10, 1 (2011)

    Article  Google Scholar 

  42. B. Lambson, Z. Gu, D. Carlton, S. Dhuey, A. Scholl, A. Doran, A. Young, J. Bokor, Cascade-like signal propagation in chains of concave nanomagnets. Appl. Phys. Lett. 100(15), 152406 (2012)

    Article  ADS  Google Scholar 

  43. A. Scholl, H. Ohldag, F. Nolting, J. Stohr, H.A. Padmore, X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures (invited). Rev. Sci. Instrum. 73(3), 1362–1366 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Lambson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambson, B., Gu, Z., Monroe, M. et al. Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic. Appl. Phys. A 111, 413–421 (2013). https://doi.org/10.1007/s00339-013-7654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7654-y

Keywords

Navigation