Skip to main content
Log in

Novel uniplanar flexible Artificial Magnetic Conductor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel flexible uniplanar Artificial Magnetic Conductor (AMC) design is presented. A prototype is manufactured and characterized under flat and bent conditions in an anechoic chamber. The designed prototype shows broad AMC operation bandwidth, polarization angle independency, and high angular stability margin when operating under oblique incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Goussetis, A.P. Feresidis, J.C. Vardaxoglou, Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate. IEEE Trans. Antennas Propag. 54(1), 82–89 (2006)

    Article  ADS  Google Scholar 

  2. D. Sievenpiper, L. Zhang, R.F. Jimenez Broas, N.G. Alexópolous, E. Yablonovithc, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999)

    Article  ADS  Google Scholar 

  3. F.R. Yang, K.P. Ma, Y. Qian, T. Itoh, A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit. IEEE Trans. Microw. Theory Tech. 47(8), 1509–1514 (1999)

    Article  ADS  Google Scholar 

  4. D.J. Kern, D.H. Werner, A. Monorchio, L. Lanuza, M.J. Wilhelm, The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans. Antennas Propag. 53(1), 8–17 (2005)

    Article  ADS  Google Scholar 

  5. Y. Zhu, A. Bossavit, S. Zouhdi, Surface impedance models for high impedance surfaces. Appl. Phys. A, Mater. Sci. Process. 103(3), 677–683 (2011)

    Article  ADS  Google Scholar 

  6. M. Grelier, F. Linot, A.C. Lepage, X. Begaud, J.M. Le Mener, M. Soiron, Analytical methods for AMC and EBG characterisations. Appl. Phys. A: Mater. Sci. Proc. 102(2), 805–808 (2011)

    ADS  Google Scholar 

  7. R.C. Hadarig, M.E. de Cos, Y. Álvarez, F. Las-Heras, Novel bow-tie–AMC combination for 5.8-GHz RFID tags usable with metallic objects. IEEE Antennas Wirel. Propag. Lett. 9, 1217–1220 (2010)

    Article  Google Scholar 

  8. M. Mantash, A.-C. Tarot, S. Collardey, K. Mabjoubi, Dual-band antenna for W-LAN applications with EBG, in Proceedings of Metamaterials’2011, Barcelona, Spain, 10–15 October (2011), pp. 456–458

    Google Scholar 

  9. M. Mantash, A.C. Tarot, S. Collardey, K. Mahdjoubi, Dual-band CPW-fed G-antenna using an EBG structure, in Antennas and Propagation Conference (LAPC), Loughborough (2010), pp. 453–456

    Google Scholar 

  10. S. Zhu, R. Langley, Dual-Band Wearable Textile Antenna on an EBG Substrate. IEEE Trans. Antennas Propag. 57(4), 926–935 (2009)

    Article  ADS  Google Scholar 

  11. P. Salonen, Y. Rahmat-Samii, WEBGA-wearable electromagnetic band-gap antenna, in IEEE APS Int. Symp. Dig., vol. 1, Monterrey, CA (2004), pp. 451–454

    Google Scholar 

  12. M.E. de Cos, Y. Álvarez, F. Las-Heras, A novel approach for RCS reduction using a combination of artificial magnetic conductors, in Progress in Electromagnetics Research PIER, vol. 107 (2010), pp. 147–159

    Google Scholar 

  13. M. Paquay, J.-C. Iriarte, I. Ederra, R. Gonzalo, P. de Maagt, Thin AMC structure for radar cross section reduction. IEEE Trans. Antennas Propag. 55(12), 3630–3638 (2007)

    Article  ADS  Google Scholar 

  14. C.R. Simovski, P. de Maagt, S.A. Tretyakov, M. Paquay, A.A. Sochava, Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence. Electron. Lett. 40(2), 92–93 (2004)

    Article  Google Scholar 

  15. M.E. de Cos, Y. Álvarez, F. Las-Heras, Planar artificial magnetic conductor: design and characterization setup in the RFID SHF band. J. Electromagn. Waves Appl. 23, 1467–1478 (2009)

    Article  Google Scholar 

  16. A.P. Feresidis, G. Goussetis, S. Wang, J.C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low profile highgain planar antennas. IEEE Trans. Antennas Propag. 53(1), 209–215 (2005)

    Article  ADS  Google Scholar 

  17. H.F.S.S. Ansoft, Ansoft Corporation, Four Station Square Suite 200, Pittsburgh, PA 15219

Download references

Acknowledgements

Work supported by the Ministerio de Ciencia e Innovación of Spain /FEDER under projects TEC2011-24492 (iScat) and CONSOLIDER-INGENIO CSD2008-00068 (TERASENSE), by the Gobierno del Principado de Asturias (PCTI)/FEDER-FSE under project PC10-06 (FLEXANT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. de Cos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cos, M.E., Las Heras, F. Novel uniplanar flexible Artificial Magnetic Conductor. Appl. Phys. A 109, 1031–1035 (2012). https://doi.org/10.1007/s00339-012-7373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7373-9

Keywords

Navigation