Skip to main content
Log in

Effect of growth temperature on characteristics of Cr-doped ZnO nanorods by magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cr-doped ZnO nanostructures, in well-aligned Zn0.92Cr0.06O nanorods array, were synthesized by radio frequency (RF) magnetron sputtering deposition at different temperatures. The effects of growth temperature on the structure and optical properties of Zn0.92Cr0.06O nanorods were investigated in terms of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and spectrophotometer. With increase the growth temperature, Zn0.94Cr0.06O nanorods have a strong improved crystalline quality. High growth temperature enhances the build-in electric field in the depletion region in the grain of the nanorods, which trap free carriers from the bulk of the grains. XPS results shows that Cr3+ ions substitute Zn2+ ions, and no secondary phases in the sample are found, meanwhile the oxygen vacancies decrease with increasing growth temperature. The high growth temperature causes a significant increase in optical transmittance of the Zn0.92Cr0.06O nanorods, which can be attributed to the weakening of scattering and absorption of light because of the increase of grain size. The red shift of the optical band gap can be mostly likely related to the Burstein–Moss effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.K. Roberts, A.B. Pakhomov, K.M. Krishnan, J. Appl. Phys. 103, 07D133 (2008)

    Article  Google Scholar 

  2. H. Liu, X. Zhang, L.Y. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 91, 072511 (2007)

    Article  ADS  Google Scholar 

  3. R.N. Gurzhi, A.N. Kalinenko, A.I. Kopeliovich, A.V. Yanousky, E.N. Bogachek, U. Landman, Phys. Rev. B 68, 125113 (2003)

    Article  ADS  Google Scholar 

  4. T. Diel, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  5. Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, Nature (London) 430, 61 (2004)

    Article  ADS  Google Scholar 

  6. W.B. Jian, Z.Y. Wu, R.T. Huang, F.R. Chen, J.J. Kai, C.Y. Wu, S.J. Chiang, M.D. Lan, J.J. Lin, Phys. Rev. B 73, 233308 (2006)

    Article  ADS  Google Scholar 

  7. Y. Jun, Y. Jung, J. Cheon, J. Am. Chem. Soc. 124, 615 (2002)

    Article  Google Scholar 

  8. S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, S. Cho, Appl. Phys. Lett. 80, 4561 (2002)

    Article  ADS  Google Scholar 

  9. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, L.A. Boatner, R.G. Wilson, Appl. Phys. Lett. 82, 239 (2003)

    Article  ADS  Google Scholar 

  10. X.M. Zhang, W. Mai, Y. Zhang, Y. Ding, Z.L. Wang, Solid State Commun. 149, 293 (2009)

    Article  ADS  Google Scholar 

  11. X.M. Zhang, Y. Zhang, Z.L. Wang, W.J. Mai, Y.D. Gu, W.S. Chu, Z.Y. Wu, Appl. Phys. Lett. 92, 162102 (2008)

    Article  ADS  Google Scholar 

  12. J.H. He, C.S. Lao, L.J. Chen, D. Davidovic, Z.L. Wang, J. Am. Chem. Soc. 127, 16376 (2005)

    Article  Google Scholar 

  13. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  Google Scholar 

  14. A. Bakin, A.C. Mofor, A. El-Shaer, A. Waag, Superlattices Microstruct. 42, 33 (2007)

    Article  ADS  Google Scholar 

  15. T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004)

    Article  ADS  Google Scholar 

  16. C. Czekalla, C. Sturm, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008)

    Article  ADS  Google Scholar 

  17. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  Google Scholar 

  18. B. Illy, B.A. Shollock, M.P. Rayan, Nanotechnology 16, 320 (2005)

    Article  ADS  Google Scholar 

  19. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006)

    Article  ADS  Google Scholar 

  20. M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalizova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Thin Solid Films 379, 28 (2000)

    Article  ADS  Google Scholar 

  21. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)

    Article  ADS  Google Scholar 

  22. R. Cebulla, R. Werndt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998)

    Article  ADS  Google Scholar 

  23. L.K. Rao, V. Vinni, Appl. Phys. Lett. 63, 608 (1993)

    Article  ADS  Google Scholar 

  24. J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977)

    Article  ADS  Google Scholar 

  25. H.C. Weller, R.H. Mauch, G.H. Bauer, Solar Energy Mater. Solar Cells. 27, 217 (1992)

  26. Y.M. Hu, S.S. Li, C.H. Chia, Appl. Phys. Lett. 98, 052503 (2011)

    Article  ADS  Google Scholar 

  27. H. Hartnagel, Semiconducting Transparent Thin Films (IOP Publishing, Bristol, 1995)

    Google Scholar 

  28. N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, Thin Solid Films 496, 99 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 10575073), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Natural Science Foundation of Jiangsu Province for the Higher Education Institutions (11KJB140011), Qing Lan Project, The Program for graduates Research & Innovation in University of Jiangsu Province (No. CXZZ11_0085), Hefei Normal University Research Funding (No. 2012kj01) and Research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. M. Wu or L. J. Zhuge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C.G., Yu, T., Wu, Z.F. et al. Effect of growth temperature on characteristics of Cr-doped ZnO nanorods by magnetron sputtering. Appl. Phys. A 109, 173–179 (2012). https://doi.org/10.1007/s00339-012-7030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7030-3

Keywords

Navigation