Skip to main content
Log in

Tunable dual-band ferrite-based metamaterials with dual negative refractions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on three types of tunable dual-band metamaterial with dual negative refraction in this paper. The three types of metamaterial are composed of ferrite slabs and three different metallic resonators, including split-ring resonators (SRR), Ω-like resonators, and short wire pairs. The ferrite slabs under an applied magnetic bias provide one magnetic resonance frequency band and the three metallic resonators provide another magnetic resonance frequency band, respectively. The continuous wires within the metamaterials provide the negative permittivity in a wide frequency band covering the two magnetic resonance bands. We give the design, analysis and numerical demonstrations of three such types of metamaterial in detail. The effective electromagnetic parameters obtained from the simulated S-parameters indicate that the three types of metamaterial indeed exhibit two negative refraction passbands and the two passbands can also be shifted by changing the magnetic bias. Our results open the way to fabricate tunable dual-band metamaterial cloaks, absorbers, and antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, New York, 2006)

    Google Scholar 

  2. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  4. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  5. G.V. Eleftheriades, A.K. Iyer, P.C. Kremer, IEEE Trans. Microw. Theory Tech. 50, 2702 (2002)

    Article  ADS  Google Scholar 

  6. R.W. Ziolkowski, IEEE Trans. Antennas Propag. 51, 1516 (2003)

    Article  ADS  Google Scholar 

  7. P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, S. Sridhar, Phys. Rev. Lett. 92, 127401 (2004)

    Article  ADS  Google Scholar 

  8. F. Falcone, T. Lopetegi, M.A.G. Laso, J.D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, M. Sorolla, Phys. Rev. Lett. 93, 197401 (2004)

    Article  ADS  Google Scholar 

  9. I.I. Smolyaninov, Appl. Phys. A 87, 227 (2007)

    Article  ADS  Google Scholar 

  10. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Phys. Rev. B 78, 241103(R) (2008)

    ADS  Google Scholar 

  11. D.K. Qing, G. Chen, Appl. Phys. Lett. 84, 669 (2004)

    Article  ADS  Google Scholar 

  12. K. Aydin, E. Ozbay, Appl. Phys. A 87, 137 (2007)

    Article  ADS  Google Scholar 

  13. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  14. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  15. J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, Appl. Phys. Lett. 84, 1537 (2004)

    Article  ADS  Google Scholar 

  16. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Phys. Rev. B 73, 041101(R) (2006)

    ADS  Google Scholar 

  17. D.H. Kwon, D.H. Werner, A.V. Kildishev, V.M. Shalaev, Opt. Express 15, 1647 (2007)

    Article  ADS  Google Scholar 

  18. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T.H. Hand, W.J. Padilla, D.R. Smith, N.M. Jokerst, S.A. Cummer, Opt. Express 16, 9746 (2008)

    Article  ADS  Google Scholar 

  19. W. Zhu, X. Zhao, N. Ji, Appl. Phys. Lett. 90, 011911 (2007)

    Article  ADS  Google Scholar 

  20. W. Zhu, X. Zhao, J. Guo, Appl. Phys. Lett. 92, 241116 (2008)

    Article  ADS  Google Scholar 

  21. M. Li, Z. Wen, J. Fu, X. Fang, Y. Dai, R. Liu, X. Han, X. Qiu, J. Phys. D, Appl. Phys. 42, 115420 (2009)

    Article  ADS  Google Scholar 

  22. C. Huang, Z. Zhao, Q. Feng, J. Cui, X. Luo, Appl. Phys. B 98, 365 (2010)

    Article  ADS  Google Scholar 

  23. T.F. Gundogdu, K. Guven, M. Gokkavas, C.M. Soukoulis, E. Ozbay, IEEE J. Sel. Top. Quantum Electron. 16, 376 (2010)

    Article  Google Scholar 

  24. E. Ekmekci, G. Turhan-Sayan, Electron. Lett. 46, 324 (2010)

    Article  Google Scholar 

  25. E. Ekmekci, K. Topalli, T. Akin, G. Turhan-Sayan, Opt. Express 17, 16046 (2009)

    Article  ADS  Google Scholar 

  26. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Zhang, Appl. Phys. Lett. 90, 011112 (2007)

    Article  ADS  Google Scholar 

  27. M.C. Ricci, H. Xu, R. Prozorov, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, IEEE Trans. Appl. Supercond. 17, 918 (2007)

    Article  ADS  Google Scholar 

  28. G. Dewar, New J. Phys. 7, 161 (2005)

    Article  ADS  Google Scholar 

  29. X.B. Cai, X.M. Zhou, G.K. Hu, Chin. Phys. Lett. 23, 348 (2006)

    Article  ADS  Google Scholar 

  30. Y.J. Cao, G.J. Wen, K.M. Wu, X.H. Xu, Chin. Sci. Bull. 52, 433 (2007)

    Article  Google Scholar 

  31. H. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, Y. Bai, Appl. Phys. Lett. 91, 131107 (2007)

    Article  ADS  Google Scholar 

  32. Y. He, P. He, S.D. Yoon, P.V. Parimi, F.J. Rachford, V.G. Harris, C. Vittoria, J. Magn. Magn. Mater. 313, 187 (2007)

    Article  ADS  Google Scholar 

  33. Y. Huang, G. Wen, T. Li, K. Xie, J. Electromagn. Anal. Appl. 2, 104 (2010)

    Article  Google Scholar 

  34. Y. Huang, G. Wen, T. Li, K. Xie, J. Appl. Comput. Electromagn. Soc. 25, 696 (2010)

    Google Scholar 

  35. B. Lax, K.J. Button, Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)

    Google Scholar 

  36. D.R. Smith, D.C. Vier, Th. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.J., Wen, G.J., Yang, Y.J. et al. Tunable dual-band ferrite-based metamaterials with dual negative refractions. Appl. Phys. A 106, 79–86 (2012). https://doi.org/10.1007/s00339-011-6638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6638-z

Keywords

Navigation