Skip to main content
Log in

Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural and optical properties of the needle-like ZnO nanostructure grown on the carbon nanotubes (ZnO/CNTs) have been studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectra. It can be seen that there is about tens of nanometers in diameter of the single ZnO nanorod from the SEM picture. The XRD analysis shows that the prepared film is of typical wurtzite hexagonal phase without impurity. Temperature dependence of electronic transitions in the ZnO/CNTs has been investigated by PL in detail. The emission features in near band gap at 10 K reveal a redshift trend compared to ZnO single crystal, which is associated with the strong interfacial connection between ZnO and CNTs. Moreover, the intensities of all transitions in near band gap and visible regions decrease with increasing the temperature but increase with the excitation power. It can be concluded that the combined effect from ZnO and CNTs plays an important role in the PL response. The emission variations with the temperature for the ZnO/CNTs are the result of the electron–phonon interaction and the lattice thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. Q. Cao, J.A. Rogers, Adv. Mater. 20, 29 (2008)

    Article  Google Scholar 

  3. L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X.F. Wang, D.J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono, Nano Lett. 9, 2610 (2009)

    Article  ADS  Google Scholar 

  4. P.G. Su, J.F. Tsai, Sens. Actuators B 135, 506 (2009)

    Article  Google Scholar 

  5. R.F. Service, Science 276, 895 (1997)

    Article  Google Scholar 

  6. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  7. H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Adv. Mater. 14, 158 (2002)

    Article  Google Scholar 

  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  9. L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, J. Phys. Chem. B 109, 7746 (2005)

    Article  Google Scholar 

  10. J. Liu, X. Li, L. Dai, Adv. Mater. 18, 1740 (2006)

    Article  Google Scholar 

  11. S. Ravindran, G.T.S. Andavan, C. Ozkan, Nanotechnology 17, 723 (2006)

    Article  ADS  Google Scholar 

  12. M. Olek, T. Büsgen, M. Hilgendorff, M. Giersig, J. Phys. Chem. B 110, 12901 (2006)

    Article  Google Scholar 

  13. H.S. Kim, W. Sigmund, Appl. Phys. Lett. 81, 2085 (2002)

    Article  ADS  Google Scholar 

  14. J.M. Green, L.F. Dong, T. Gutu, J. Jiao, J.F. Conley, J.Y. Ono, J. Appl. Phys. 99, 094308 (2006)

    Article  ADS  Google Scholar 

  15. K. Yu, Y.S. Zhang, F. Xu, Q. Li, Z.Q. Zhu, Q. Wan, Appl. Phys. Lett. 88, 153123 (2006)

    Article  ADS  Google Scholar 

  16. X.B. Yan, B.K. Tay, P. Miele, Carbon 46, 753 (2008)

    Article  Google Scholar 

  17. C.J. Pak, D.K. Choi, J.K. Yoo, G.C. Yi, C.J. Lee, Appl. Phys. Lett. 90, 083107 (2007)

    Article  ADS  Google Scholar 

  18. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  Google Scholar 

  19. Q. Liang, L.Z. Gao, Q. Li, S.H. Tang, B.C. Liu, Z.L. Yu, Carbon 39, 897 (2001)

    Article  Google Scholar 

  20. W.W. Li, W.L. Yu, Y.J. Jiang, C.B. Jing, J.Y. Zhu, M. Zhu, Z.G. Hu, X.D. Tang, J.H. Chu, J. Phys. Chem. C 114, 11951 (2010)

    Article  Google Scholar 

  21. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  22. A. Mang, K. Reimann, St. Rübenacke, Solid State Commun. 94, 251 (1995)

    Article  ADS  Google Scholar 

  23. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Phys. Rev. B 70, 195207 (2004)

    Article  ADS  Google Scholar 

  24. R. Paula, P. Kumbhakara, A.K. Mitraa, J. Exp. Nanosci. 5, 363 (2010)

    Article  Google Scholar 

  25. A.B.M.A. Ashrafi, N.T. Binh, B.P. Zhang, Y. Segawa, J. Appl. Phys. 95, 7738 (2004)

    Article  ADS  Google Scholar 

  26. D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, Phys. Rev. B 81, 115304 (2010)

    Article  ADS  Google Scholar 

  27. J.B. Cui, Y.C. Soo, A. Thomas, H. Kandel, T.P. Chen, C.P. Daghlian, J. Appl. Phys. 104, 043521 (2008)

    Article  ADS  Google Scholar 

  28. Y. Zhang, B.X. Lin, X.K. Sun, Z.X. Fu, Appl. Phys. Lett. 86, 131910 (2005)

    Article  ADS  Google Scholar 

  29. H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D.M. Hofmann, B.K. Meyer, Opt. Mater. 23, 33 (2003)

    Article  ADS  Google Scholar 

  30. S.A. Lourenco, I.F.L. Dias, J.L. Duarte, E. Laureto, E.A. Meneses, J.R. Leite, I. Mazzaro, J. Appl. Phys. 89, 6159 (2001)

    Article  ADS  Google Scholar 

  31. W.W. Li, J.J. Zhu, J.D. Wu, J. Gan, Z.G. Hu, M. Zhu, J.H. Chu, Appl. Phys. Lett. 97, 121102 (2010)

    Article  ADS  Google Scholar 

  32. M. Wang, X. Cheng, J. Yang, Appl. Phys. A 96, 783 (2009)

    Article  ADS  Google Scholar 

  33. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  ADS  Google Scholar 

  34. Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, Z. Ye, J. Appl. Phys. 107, 053524 (2010)

    Article  ADS  Google Scholar 

  35. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, P. Gibart, J. Appl. Phys. 86, 3721 (1999)

    Article  ADS  Google Scholar 

  36. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  ADS  Google Scholar 

  37. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    Article  ADS  Google Scholar 

  38. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 90, 123 (2000)

    Article  Google Scholar 

  39. J.D. Ye, S.L. Gu, F. Qin, S.M. Zhu, S.M. Liu, X. Zhou, W. Liu, L.Q. Hu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. A, Mater. Sci. Process. 81, 759 (2005)

    Article  ADS  Google Scholar 

  40. A. Torres, A. Martın-Martın, O. Martınez, A.C. Prieto, V. Hortelano, J. Jiménez, A. Rodrıguez, J. Sangrador, T. Rodrıguez, Appl. Phys. Lett. 96, 011904 (2010)

    Article  ADS  Google Scholar 

  41. A. Mohanta, R.K. Thareja, J. Appl. Phys. 107, 084904 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, D., Chen, X., Wang, Y. et al. Temperature dependent photoluminescence properties of needle-like ZnO nanostructures deposited on carbon nanotubes. Appl. Phys. A 105, 463–468 (2011). https://doi.org/10.1007/s00339-011-6622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6622-7

Keywords

Navigation