Skip to main content

Advertisement

Log in

Synaptic behaviors of a single metal–oxide–metal resistive device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mammalian brain is far superior to today’s electronic circuits in intelligence and efficiency. Its functions are realized by the network of neurons connected via synapses. Much effort has been extended in finding satisfactory electronic neural networks that act like brains, i.e., especially the electronic version of synapse that is capable of the weight control and is independent of the external data storage. We demonstrate experimentally that a single metal–oxide–metal structure successfully stores the biological synaptic weight variations (synaptic plasticity) without any external storage node or circuit. Our device also demonstrates the reliability of plasticity experimentally with the model considering the time dependence of spikes. All these properties are embodied by the change of resistance level corresponding to the history of injected voltage-pulse signals. Moreover, we prove the capability of second-order learning of the multi-resistive device by applying it to the circuit composed of transistors. We anticipate our demonstration will invigorate the study of electronic neural networks using non-volatile multi-resistive device, which is simpler and superior compared to other storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Nature 388, 50 (1997)

    Article  ADS  Google Scholar 

  2. M.N. Kozicki, M. Yun, L. Hilt, A. Singh, J. Electrochem. Soc. 146, 298 (1999)

    Google Scholar 

  3. A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 1389 (2000)

    Article  Google Scholar 

  4. S. Lai, IEDM Tech. Dig. 255 (2003)

  5. S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C. Kong, B. Dieny, K.-J. Lee, Nat. Phys. 5, 898 (2009)

    Article  Google Scholar 

  6. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  ADS  Google Scholar 

  7. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)

    Article  ADS  Google Scholar 

  8. A. Sawa, Mater. Today 11, 28 (2008)

    Article  Google Scholar 

  9. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  10. U. Russo, D. Kamalanathan, D. Lelmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56, 1040 (2009)

    Article  ADS  Google Scholar 

  11. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  12. S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, K.-H. Kim, IEEE Electron Device Lett. 30, 120 (2009)

    Article  ADS  Google Scholar 

  13. G.S. Snider, Nanotechnology 18, 365202 (2007)

    Article  Google Scholar 

  14. G.S. Snider, in IEEE International Symposium on Nanoscale Architectures (2008), p. 85

    Chapter  Google Scholar 

  15. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)

    Article  ADS  Google Scholar 

  16. T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J.K. Gimzewski, M. Aono, Adv. Mater. 22, 1831 (2010)

    Article  Google Scholar 

  17. Q. Lai, L. Zhang, Z. Li, W.F. Stickle, R.S. Williams, Y. Chen, Adv. Mater. 22, 2448 (2010)

    Article  Google Scholar 

  18. M. Mahowald, R. Douglas, Nature 354, 515 (1991)

    Article  ADS  Google Scholar 

  19. R. Douglas, M. Mahowald, C. Mead, Annu. Rev. Neurosci. 18, 255 (1995)

    Article  Google Scholar 

  20. M.C.W. van Rossum, G.Q. Bi, G.G. Turrigiano, J. Neurosci. 20, 8812 (2000)

    Google Scholar 

  21. R.G.M. Morris, S.J. Martin, P.D. Grimnwood, Annu. Rev. Neurosci. 23, 649 (2000)

    Article  Google Scholar 

  22. C. Bartolozzi, G. Indiveri, Neurocomputing 72, 726 (2009)

    Article  Google Scholar 

  23. J.V. Arthur, K. Boahen, in Advances in Neural Information Processing Systems, ed. by Y. Weiss, B. Schölkopf, J. Platt (MIT Press, Vancouver, 2006), p. 281

    Google Scholar 

  24. Y. Tsur, I. Reiss, Phys. Rev. B 60, 8138 (1999)

    Article  ADS  Google Scholar 

  25. W.-Y. Yang, W.-G. Kim, S.-W. Rhee, Thin Solid Films 517, 967 (2008)

    Article  ADS  Google Scholar 

  26. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  27. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  28. C.C. Bell, V.Z. Han, Y. Sugawara, K. Grant, Nature 387, 278 (1997)

    Article  ADS  Google Scholar 

  29. G.Q. Bi, M.M. Poo, J. Neurosci. 18, 10464 (1998)

    Google Scholar 

  30. R.C. Froemke, Y. Dan, Nature 416, 433 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SJ., Kim, GB., Lee, K. et al. Synaptic behaviors of a single metal–oxide–metal resistive device. Appl. Phys. A 102, 1019–1025 (2011). https://doi.org/10.1007/s00339-011-6282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6282-7

Keywords

Navigation