Skip to main content
Log in

MFM and AFM study of thin cobalt films modified by fluorosilane

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polycrystalline cobalt films 100 nm thick were thermally evaporated on oxidized Si(100) substrates. Then 1H, 1H, 2H, 2H perfluorodecyltrichlorosilane (FDTS) films of various thicknesses, in the range of about 2 nm to 30 nm, were grown on cobalt surfaces by vapor phase deposition (VPD). The cobalt films modified by FDTS were investigated using magnetic force microscopy (MFM) and atomic force microscopy (AFM). MFM observation showed that the magnetic structure of the cobalt films modified by FDTS is composed of domains with a considerable component of magnetization perpendicular to the film surface. This in turn indicates that the cobalt films on oxidized Si(100) substrates crystallize in the hexagonal close-packed (HCP) phase and exhibit a texture with the hexagonal axis perpendicular to the film surface. The magnetic domains formed a maze structure. The domain width increased from typically 80–120 nm to 400–500 nm with increasing the thickness of FDTS films from about 2 nm to 30 nm. AFM imaging of the surfaces of FDTS films revealed the presence of an agglomerate morphology. The agglomerates varied in size from typically 30–70 nm to 150–300 nm as the film thickness was increased from about 2 nm to 30 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brandenburg, R. Hühne, L. Schultz, V. Neu, Phys. Rev. B 79, 054429 (2009)

    Article  ADS  Google Scholar 

  2. A. Kharmouche, S.-M. Chérif, A. Bourzami, A. Layadi, G. Schmerber, J. Phys. D, Appl. Phys. 37, 2583 (2004)

    Article  ADS  Google Scholar 

  3. W. Szmaja, in Advances in Imaging and Electron Physics, vol. 141, ed. by P.W. Hawkes (Elsevier, Amsterdam, 2006), p. 175

    Google Scholar 

  4. M. Albrecht, M. Maret, A. Maier, F. Treubel, B. Riedlinger, U. Mazur, G. Schatz, S. Anders, J. Appl. Phys. 91, 8153 (2002)

    Article  ADS  Google Scholar 

  5. A. Wadas, M. Dreyer, M. Kleiber, R. Wiesendanger, Appl. Phys. A 66, 465 (1998)

    Article  ADS  Google Scholar 

  6. F. Dumas-Bouchiat, H.S. Nagaraja, F. Rossignol, C. Champeaux, A. Catherinot, Appl. Surf. Sci. 247, 76 (2005)

    Article  ADS  Google Scholar 

  7. M. Abes, M.V. Rastei, J. Vénuat, L.D. Buda-Prejbeanu, A. Carvalho, G. Schmerber, J. Arabski, E. Beaurepaire, J.P. Bucher, A. Dinia, V. Pierron-Bohnes, Mater. Sci. Eng. B 126, 207 (2006)

    Article  Google Scholar 

  8. D. Shindo, Y. Murakami, J. Phys. D, Appl. Phys. 41, 183002 (2008)

    Article  ADS  Google Scholar 

  9. G. Mani, M.D. Feldman, S. Oh, C.M. Agrawal, Appl. Surf. Sci. 255, 5961 (2009)

    Article  ADS  Google Scholar 

  10. S. Marcinko, A.Y. Fadeev, Langmuir 20, 2270 (2004)

    Article  Google Scholar 

  11. P. Grütter, H.J. Mamin, D. Rugar, in Scanning Tunneling Microscopy II, ed. by R. Wiesendanger, H.-J. Güntherodt (Springer, Berlin, 1992), p. 151

    Chapter  Google Scholar 

  12. U. Hartmann, Annu. Rev. Mater. Sci. 29, 53 (1999)

    Article  ADS  Google Scholar 

  13. A. de Lozanne, Microsc. Res. Tech. 69, 550 (2006)

    Article  Google Scholar 

  14. M.R. Koblischka, B. Hewener, U. Hartmann, A. Wienss, B. Christoffer, G. Persch-Schuy, Appl. Phys. A 76, 879 (2003)

    Article  ADS  Google Scholar 

  15. W. Szmaja, J. Grobelny, M. Cichomski, Appl. Phys. Lett. 85, 2878 (2004)

    Article  ADS  Google Scholar 

  16. W. Szmaja, K. Polański, K. Dolecki, J. Magn. Magn. Mater. 151, 249 (1995)

    Article  ADS  Google Scholar 

  17. D.M. Donnet, K.M. Krishnan, Y. Yajima, J. Phys. D, Appl. Phys. 28, 1942 (1995)

    Article  ADS  Google Scholar 

  18. Y. Gao, J. Zhu, Y. Weng, B. Han, Appl. Phys. Lett. 74, 1749 (1999)

    Article  ADS  Google Scholar 

  19. M. Kisielewski, A. Maziewski, M. Tekielak, A. Wawro, L.T. Baczewski, Phys. Rev. Lett. 89, 087203 (2002)

    Article  ADS  Google Scholar 

  20. T. Rahman, X. Liu, A. Morisako, M. Matsumoto, J. Magn. Magn. Mater. 287, 250 (2005)

    Article  ADS  Google Scholar 

  21. S.L. Chen, W. Liu, C.L. Chen, Z.D. Zhang, J. Appl. Phys. 98, 113905 (2005)

    Article  ADS  Google Scholar 

  22. J.C. Mallinson, IEEE Trans. Magn. 17, 2453 (1981)

    Article  ADS  Google Scholar 

  23. B. Vellekoop, L. Abelmann, S. Porthun, C. Lodder, J. Magn. Magn. Mater. 190, 148 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Cichomski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichomski, M., Szmaja, W. MFM and AFM study of thin cobalt films modified by fluorosilane. Appl. Phys. A 102, 339–343 (2011). https://doi.org/10.1007/s00339-010-5979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5979-3

Keywords

Navigation