Skip to main content
Log in

Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During the final stages of polishing silicon wafers, much of the interactions between silicon and diamond abrasive takes place at the silicon asperities. These interactions, leading to material removal, were investigated in a MD simulation of polishing of a silicon wafer with a diamond abrasive under dry conditions. Simulations were conducted with silicon asperities of different geometries, different abrasive configurations, and polishing speeds. Under the conditions of polishing, the silicon atoms from the asperities were found to bond chemically to the surface of the diamond abrasive. Continued transverse motion of the diamond abrasive (relative to the silicon asperity) leads to tensile pulling, necking, and ultimate separation of the silicon asperity material instead of conventional material removal in polishing (chip formation) involving cutting/ploughing, which takes place in the absence of chemical bonding between the abrasive and the asperity material. This phenomenon has not been reported previously in the literature. The thrust and cutting forces initially increase due to the increase in the number of asperity atoms affected finally reaching a maximum. This is followed by a decrease of these forces due to tensile pulling and formation of individual strings followed by ultimate separation or breakage of the final string. The ratio of thrust force (F z ) to the cutting force (F x ), i.e. |(F z /F x )| was found to increase continuously to a maximum of ∼0.8 followed by continuous decrease to ∼0.25. This is in contrast to a more or less constant value of ∼2 in the case of tools with rounded radii or tools with large negative rake angles, where material is removed in the form of chips ahead of the tool. Three regions of the asperity have been identified that are useful in the development of a phenomenological model for polishing that enables computation of material removal rates: (1) the region directly in front of the abrasive for which the probability of the removal of an asperity atom is close to unity, (2) the distant region where this probability is nearly zero, and (3) an intermediate region from which the probability of removal is close to half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-C. Lih, S.T.S. Bukkapatnam, P. Rao, N. Chandrasekaran, R. Komanduri, IEEE Trans. Autom. Sci. Eng. 5(1), 71–83 (2008)

    Article  Google Scholar 

  2. P.B. Zantye, A. Kumar, A.K. Sikder, Mater. Sci. Eng. R45, 89–220 (2004)

    Google Scholar 

  3. Y. Ye, R. Biswas, A. Bastawros, A. Chandra, Appl. Phys. Lett. 81, 1875–1877 (2002)

    Article  ADS  Google Scholar 

  4. J. Zhong, J.B. Adams, L.G. Hector Jr., J. Appl. Phys. 94, 4306–4314 (2003)

    Article  ADS  Google Scholar 

  5. E. Chagarov, J.B. Adams, J. Appl. Phys. 94, 3853–3861 (2003)

    Article  ADS  Google Scholar 

  6. A. Rajendran, Y. Takahashi, M. Koyama, M. Kubo, A. Miyamoto, Appl. Surf. Sci. 244, 34–38 (2005)

    Article  ADS  Google Scholar 

  7. T. Yokosuka, H. Kurokawa, S. Takami, M. Kubo, A. Miyamoto, A. Imamura, Jpn. J. Appl. Phys., Part 1 41, 2410–2413 (2002)

    Article  Google Scholar 

  8. T. Yokosuka, K. Sasata, H. Kurokawa, S. Takami, M. Kubo, A. Imamura, A. Miyamoto, Jpn. J. Appl. Phys., Part 1 42, 1897–1902 (2003)

    Article  Google Scholar 

  9. R. Zhang, X. Wang, P. Shrotriya, R. Biswas, A. Bastawros, A. Chandra, Mach. Sci. Technol. 11, 515–530 (2007)

    Article  Google Scholar 

  10. X. Han, Appl. Surf. Sci. 253, 6211–6216 (2007)

    Article  ADS  Google Scholar 

  11. N. Chandrasekaran, A. Noori-Khajavi, L.M. Raff, R. Komanduri, Philos. Mag. 77, 7–26 (1997)

    Google Scholar 

  12. R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 218, 84–97 (1998)

    Article  Google Scholar 

  13. R. Komanduri, N. Chandrasekaran, L.M. Raff, Ann. CIRP 48(1), 67–72 (1999)

    Article  Google Scholar 

  14. R. Komanduri, N. Chandrasekaran, L.M. Raff, Philos. Mag. B 79, 955–968 (1999)

    Article  ADS  Google Scholar 

  15. R. Komanduri, N. Chandrasekaran, L.M. Raff, Phys. Rev. B 61, 14007 (2000)

    Article  ADS  Google Scholar 

  16. R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 242, 60–88 (2000)

    Article  Google Scholar 

  17. R. Komanduri, L.M. Raff, Proc. Inst. Mech. Eng. (Lond.), J. Eng. Manuf. 215, 1639–1672 (2001). Part B

    Article  Google Scholar 

  18. R. Komanduri, N. Chandrasekaran, L.M. Raff, Philos. Mag. B 81, 1989–2019 (2001)

    ADS  Google Scholar 

  19. R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 240, 113–143 (2000)

    Article  Google Scholar 

  20. P. Masini, M. Bernasconi, J. Phys.: Condens. Matter 14, 4133–4144 (2002)

    Article  ADS  Google Scholar 

  21. D.A. Litton, S.H. Garofalini, J. Appl. Phys. 89, 6013–6023 (2001)

    Article  ADS  Google Scholar 

  22. E.B. Webb III, S.H. Garofalini, J. Non-Crystal. Solids 226, 47–57 (1998)

    Article  ADS  Google Scholar 

  23. Y. Li, Microelectronic Applications of Chemical Mechanical Planarization (Wiley, New York, 2007)

    Book  Google Scholar 

  24. H. Liang, D.R. Craven, Tribology in Chemical Mechanical Planarization (CRC Press, Boca Raton, 2005)

    Book  Google Scholar 

  25. M.R. Oliver, Chemical Mechanical Planarization of Semiconductor Materials (Springer, Berlin, 2004)

    Google Scholar 

  26. D.K. Watts, N. Kimura, M. Tsujimura, New Trends Electrochem. Technol. 3, 437–469 (2005)

    Google Scholar 

  27. H. Liang, Tribol. Int. 38, 235–242 (2005)

    Article  Google Scholar 

  28. R.K. Singh, MRS Bull. 27, 743–747 (2002)

    Google Scholar 

  29. U. Landman, W.D. Luedtke, E.M. Ringer, Wear 153, 3 (1992)

    Article  Google Scholar 

  30. R. Komanduri, Ann. CIRP 45(1), 509–514 (1996)

    Article  Google Scholar 

  31. R. Komanduri, Int. J. Mach. Tool Des. Res. 11, 223–233 (1971)

    Article  Google Scholar 

  32. T.N. Loladze, G.V. Bakuchava, in Proc. Int. Grinding Conference, Pittsburgh, PA, ed. by M.C. Shaw (Carnegie Press, Pittsburgh, 1972), pp. 432–448

    Google Scholar 

  33. R. Komanduri, M.C. Shaw, Nature 255, 211 (1975)

    Article  ADS  Google Scholar 

  34. R. Komanduri, M.C. Shaw, Philos. Mag. 34, 195–204 (1976)

    Article  ADS  Google Scholar 

  35. R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Philos. Mag. 88, 1259–1275 (2008)

    Article  ADS  Google Scholar 

  36. S.R. Bhagavatula, R. Komanduri, Philos. Mag. A 74, 1003–1017 (1996)

    Article  ADS  Google Scholar 

  37. M. Jiang, N.O. Wood, R. Komanduri, Trans. ASME, J. Eng. Mater. Technol. 120, 304–312 (1998)

    Article  Google Scholar 

  38. J. Yan, M. Yoshino, T. Kuriagawa, T. Shirakashi, K. Syoji, R. Komanduri, Mater. Sci. Eng. B 297(1–2), 230–234 (2000)

    Google Scholar 

  39. Y. Zhao, L. Chang, S.H. Kim, Wear 254, 332–339 (2003)

    Article  Google Scholar 

  40. P.M. Agrawal, L.M. Raff, R. Komanduri, Phys. Rev. B 72, 125206 (2005)

    Article  ADS  Google Scholar 

  41. J. Tersoff, Phys. Rev. B 39, 5566–5568 (1989)

    Article  ADS  Google Scholar 

  42. S.J. Cook, P. Clancy, Phys. Rev. B 47, 7686–7699 (1993)

    Article  ADS  Google Scholar 

  43. S. Yoo, X.C. Zeng, J.R. Morris, J. Chem. Phys. 120, 1654–1656 (2004)

    Article  ADS  Google Scholar 

  44. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford, 1993)

    Google Scholar 

  45. P.M. Agrawal, L.M. Raff, S. Bukkapatnam, R. Komanduri, Tribol. Int. 43, 100–107 (2010)

    Article  Google Scholar 

  46. H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa, Phys. Rev. Lett. 82, 4898–4901 (1999)

    Article  ADS  Google Scholar 

  47. Y. Mo, I. Szlufarska, Appl. Phys. Lett. 90, 181926 (2007)

    Article  ADS  Google Scholar 

  48. A. Mattoni, M. Ippolito, L. Colombo, Phys. Rev. B 76, 224103 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Komanduri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, P.M., Raff, L.M., Bukkapatnam, S. et al. Molecular dynamics investigations on polishing of a silicon wafer with a diamond abrasive. Appl. Phys. A 100, 89–104 (2010). https://doi.org/10.1007/s00339-010-5570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5570-y

Keywords

Navigation