Skip to main content
Log in

Electrospinning of polyacrylonitrile fibers from ionic liquid solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We developed a temperature-controlled electrospinning apparatus specially for the polymers/IL system with high viscosity and surface tension and investigated the electrospinning of polyacrylonitrile (PAN)/1-butyl-3-methyl-imidazolium bromide ([BMIM][Br]) solutions. The rheological behaviors, surface tensions and conductivities of PAN/[BMIM]/[Br] solutions at different temperatures indicated that appropriately increasing the temperature is beneficial to their spinnability. It is also shown that PAN/[BMIM]/[Br] with a concentration of 3 wt%, 4 wt% and 5 wt% can be electrospun to fibers by increasing their temperatures to 70°C, 75°C or 85°C, respectively. A rotating drum composed of a dacron mesh was used as a collector in order to avoid the contraction of the wet fibers. This present study provides an alternative method for electrospinning polymer fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Theron, E. Zussman, A.L. Yarin, Polymer 45, 2017 (2004)

    Article  Google Scholar 

  2. J.J. Ge, H.Q. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, J. Am. Chem. Soc. 126, 15754 (2004)

    Article  Google Scholar 

  3. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Biomaterials 26, 2603 (2005)

    Article  Google Scholar 

  4. P. Heikkila, A. Harlin, Eur. Polym. J. 44, 3067 (2008)

    Article  Google Scholar 

  5. B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Biomaterials 25, 1289 (2004)

    Article  Google Scholar 

  6. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24, 2077 (2003)

    Article  Google Scholar 

  7. H.W. Kim, H.S. Yu, H.H. Lee, J. Biomed. Mater. Res. A 87, 25 (2008)

    Google Scholar 

  8. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)

    Article  Google Scholar 

  9. N. Bhattarai, Z.S. Li, D. Edmondson, M.Q. Zhang, Adv. Mater. 18, 1463 (2006)

    Article  Google Scholar 

  10. D. Li, Y.N. Xia, Adv. Mater. 16, 1151 (2004)

    Article  Google Scholar 

  11. J. Lyons, C. Li, F. Ko, Polymer 45, 7597 (2004)

    Article  Google Scholar 

  12. P.D. Dalton, K. Klinkhammer, J. Salber, D. Klee, M. Moller, Biomacromolecules 7, 686 (2006)

    Article  Google Scholar 

  13. P.D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, M. Moller, Polymer 48, 6823 (2007)

    Article  Google Scholar 

  14. K.R. Seddon, J. Chem. Technol. Biotechnol. 68, 351 (1997)

    Article  Google Scholar 

  15. J. Ranke, S. Stolte, R. Störmann, J. Arning, B. Jastorff, Chem. Rev. 107, 2183 (2007)

    Article  Google Scholar 

  16. R.C. Remsing, R.P. Swatloski, R.D. Rogers, G. Moyna, Chem. Commun. 12, 1271 (2006)

    Article  Google Scholar 

  17. M.B. Turner, S.K. Spear, J.G. Huddleston, J.D. Holbrey, R.D. Rogers, Green Chem. 5, 443 (2003)

    Article  Google Scholar 

  18. P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39, 3773 (2000)

    Article  Google Scholar 

  19. T. Welton, Chem. Rev. 99, 2071 (1999)

    Article  Google Scholar 

  20. R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124, 4974 (2002)

    Article  Google Scholar 

  21. S.S. Xu, J. Zhang, A.H. He, J.X. Li, H. Zhang, C.C. Han, Polymer 49, 2911 (2008)

    Article  Google Scholar 

  22. C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data 49, 954 (2004)

    Article  Google Scholar 

  23. J.M. Crosthwaite, M.J. Muldoon, J.K. Dixon, J.L. Anderson, J.F. Brennecke, J. Chem. Thermodyn. 37, 559 (2005)

    Article  Google Scholar 

  24. J.Z. Yang, X.M. Lu, J.S. Gui W, G. Xu, Green Chem. 6, 541 (2004)

    Article  Google Scholar 

  25. Q.G. Zhang, J.Z. Yang, X.M. Lu, J.S. Gui, Z. Huang, Fluid Phase Equilib. 226, 207 (2004)

    Article  Google Scholar 

  26. S.L. Zang, Q.G. Zhang, M. Huang, B. Wang, H.Z. Yang, Fluid Phase Equilib. 230, 192 (2005)

    Article  Google Scholar 

  27. O.O. Okoturo, T.J. VanderNoot, J. Electroanal. Chem. 568, 167 (2004)

    Article  Google Scholar 

  28. S. Carda-Broch, A. Berthod, D.W. Armstrong, Anal. Bioanal. Chem. 375, 191 (2003)

    Google Scholar 

  29. R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, J. Fluorine Chem. 99, 1 (1999)

    Article  Google Scholar 

  30. P. Wasserscheid, A. Bosmann, C. Bolm, Chem. Commun. 3, 200 (2002)

    Article  Google Scholar 

  31. R.J. Sammons, J.R. Collier, T.G. Rials, S. Petrovan, J. Appl. Polym. Sci. 110, 1175 (2008)

    Article  Google Scholar 

  32. S.L. Shenoy, W.D. Batesa, H.L. Frischb, G.E. Wneka, Polymer 46, 3372 (2005)

    Article  Google Scholar 

  33. Y. Ren, D.R. Picout, P.R. Ellis, S.B. Ross-Murphy, Biomacromolecules 5, 2384 (2004)

    Article  Google Scholar 

  34. A. Frenot, M.W. Henriksson, P. Walkenstrom, J. Appl. Polym. Sci. 103, 1473 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyi Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Yao, Y., Lin, Y. et al. Electrospinning of polyacrylonitrile fibers from ionic liquid solution. Appl. Phys. A 98, 517–523 (2010). https://doi.org/10.1007/s00339-009-5483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5483-9

Keywords

Navigation