Skip to main content
Log in

Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ni–P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni–P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni–P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni–P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takano, M. Saito, M. Miyagi, Appl. Opt. 33, 3507 (1994)

    Article  ADS  Google Scholar 

  2. Y.T. Pang, G.W. Meng, Q. Fang, L.D. Zhang, Nanotechnology 14, 20 (2003)

    Article  ADS  Google Scholar 

  3. H.J. Tang, F.Q. Wu, S. Zhang, Appl. Phys. A 85, 29 (2006)

    Article  ADS  Google Scholar 

  4. C.A. Foss Jr., M.J. Tierney, C.R. Martin, J. Phys. Chem. 96, 9001 (1992)

    Article  Google Scholar 

  5. A. Zhao, L. Zhang, Y. Pang, C. Ye, Appl. Phys. A 80, 1725 (2005)

    Article  ADS  Google Scholar 

  6. S. Melle, J.L. Menėndez, G. Armelles, Appl. Phys. Lett. 83, 4547 (2003)

    Article  ADS  Google Scholar 

  7. J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gösele, Chem. Mater. 15, 776 (2003)

    Article  Google Scholar 

  8. D.S. Xu, X.S. Shi, G.L. Guo, L.L. Gui, Y.Q. Tang, J. Phys. Chem. B 104, 5061 (2000)

    Article  Google Scholar 

  9. T. Li, S.G. Yang, L.S. Huang, B.X. Gu, Y.W. Du, Nanotechnology 15, 1479 (2005)

    Article  ADS  Google Scholar 

  10. J.L. Zhao, X.H. Wang, T.Y. Sun, L.T. Li, Nanotechnology 16, 2450 (2005)

    Article  ADS  Google Scholar 

  11. Y.G. Guo, J.S. Hu, H.P. Liang, L.J. Wan, C.L. Bai, Adv. Funct. Mater. 15, 196 (2005)

    Article  Google Scholar 

  12. C.G. Jin, G.Q. Zhang, T. Qian, X.G. Li, Z. Yao, J. Phys. Chem. B 108, 1844 (2004)

    Article  Google Scholar 

  13. Y.T. Tian, G.W. Meng, G.Z. Wang, F. Phillipp, S.H. Sun, L.D. Zhang, Nanotechnology 17, 1041 (2006)

    Article  ADS  Google Scholar 

  14. A. Brenner, G. Riddell, J. Res. Natl. Bur. Stand. 37, 31 (1946)

    Google Scholar 

  15. Y.F. Wang, W.G. Fu, M. Feng, X.W. Cao, Appl. Phys. A 90, 549 (2008)

    Article  ADS  Google Scholar 

  16. H. Chiriac, A.-E. Moga, M. Urse, I. Paduraru, N. Lupu, J. Magn. Magn. Mater. 272, 1678 (2004)

    Article  ADS  Google Scholar 

  17. Y. Lin, T. Xie, B.C. Cheng, B.Y. Geng, L.D. Zhang, Chem. Phys. Lett. 380, 521 (2003)

    Article  ADS  Google Scholar 

  18. H. Masuda, F. Fukuda, Science 268, 1466 (1995)

    Article  ADS  Google Scholar 

  19. A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu, Appl. Phys. Lett. 79, 1039 (2001)

    Article  ADS  Google Scholar 

  20. D.L. Guo, L.X. Fan, J.P. Sang, Y.F. Liu, S.Y. Huang, X.W. Zou, Nanotechnology 18, 405304 (2007)

    Article  Google Scholar 

  21. P. Sahoo, J. Phys. D, Appl. Phys. 41, 025310 (2008)

    Article  Google Scholar 

  22. J. Chen, D. Ci, R. Wang, J. Zhang, Appl. Surf. Sci. 255, 3300 (2008)

    Article  ADS  Google Scholar 

  23. H.X. Li, W.J. Wang, H. Li, J.F. Deng, J. Catal. 194, 211 (2000)

    Article  Google Scholar 

  24. L.Y. Zhang, J. Feng, D.S. Xue, Mater. Lett. 61, 1363 (2007)

    Article  Google Scholar 

  25. D. Nesheva, J. Optoelectron. Adv. Mater. 7, 185 (2005)

    Google Scholar 

  26. H. Li, F. Pederiva, B.L. Wang, J.L. Wang, G.H. Wang, Appl. Phys. Lett. 86, 011913 (2005)

    Article  ADS  Google Scholar 

  27. L.L. Wu, Y.S. Wu, H.Y. Wei, Y.C. Shi, C.X. Hu, Mater. Lett. 58, 2700 (2004)

    Article  Google Scholar 

  28. A. Hagfeldt, M. Gratman, Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  29. T. Abe, Y. Tachibana, T. Uematsu, M. Iwamoto, J. Chem. Soc. Chem. Commun. 16, 1617 (1995)

    Article  Google Scholar 

  30. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  ADS  Google Scholar 

  31. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988)

    Article  Google Scholar 

  32. M.L. Sui, K. Lu, W. Deng, L.Y. Xiong, S. Patu, Y.Z. He, Phys. Rev. B 44, 6466 (1991)

    Article  ADS  Google Scholar 

  33. J.K. Vassiliou, V. Mehrotra, M.W. Russell, R.D. McMichael, R.D. Shull, R.F. Ziolo, J. Appl. Phys. 73, 5109 (1993)

    Article  ADS  Google Scholar 

  34. J. Wang, R. Zhang, L.M. Guang, Chin. Phys. Lett. 25, 566 (2008)

    Article  ADS  Google Scholar 

  35. B.G. Potter Jr., J.H. Simmons, J. Appl. Phys. 68, 1218 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Wu Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Wang, FH., Guo, DL. et al. Effects of heat treatment on optical absorption properties of Ni–P/AAO nano-array composite structure. Appl. Phys. A 97, 677–681 (2009). https://doi.org/10.1007/s00339-009-5289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5289-9

PACS

Navigation