Skip to main content
Log in

Quantum dynamical study of the amplitude collapse and revival of coherent A 1g phonons in bismuth: a classical phenomenon?

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We parameterize the potential energy surface of bismuth after intense laser excitation using accurate full-potential linearized augmented plane wave calculations. Anharmonic contributions up to the fifth power in the A 1g phonon coordinate are given as a function of the absorbed laser energy. Using a previously described model including effects of electron–phonon coupling and carrier diffusion due to Johnson et al., we obtain the time-dependent potential energy surface for any given laser pulse shape and duration. On the basis of this parameterization we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent A 1g phonons in bismuth considering work of Misochko et al. Our results strongly indicate that the observed beatings are not related to quantum effects and are most probably of classical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hunsche, K. Wienecke, T. Dekorsy, H. Kurz, Phys. Rev. Lett. 75, 1815 (1995)

    Article  ADS  Google Scholar 

  2. M. Hase, M. Kitajima, S. Nakashima, K. Mizoguchi, Phys. Rev. Lett. 88, 067401 (2002)

    Article  ADS  Google Scholar 

  3. S.L. Johnson, P. Beaud, C.J. Milne, F.S. Krasniqi, E.S. Zijlstra, M.E. Garcia, M. Kaiser, D. Grolimund, R. Abela, G. Ingold, Phys. Rev. Lett. 100, 155501 (2008)

    Article  ADS  Google Scholar 

  4. D. Boschetto, E.G. Gamaly, A.V. Rode, B. Luther-Davies, D. Glijer, T. Garl, O. Albert, A. Rousse, J. Etchepare, Phys. Rev. Lett. 100, 027404 (2008)

    Article  ADS  Google Scholar 

  5. O.V. Misochko, K. Sakai, S. Nakashima, Phys. Rev. B 61, 11225 (2000)

    Article  ADS  Google Scholar 

  6. O.V. Misochko, M. Hase, K. Ishioka, M. Kitajima, Phys. Rev. Lett. 92, 197401 (2004)

    Article  ADS  Google Scholar 

  7. E.S. Zijlstra, L.L. Tatarinova, M.E. Garcia, Phys. Rev. B 74, 220301(R) (2006)

    Article  ADS  Google Scholar 

  8. I.Sh. Averbukh, N.F. Perelman, Phys. Lett. A 139, 449 (1989)

    Article  ADS  Google Scholar 

  9. J.A. Yeazell, M. Mallalieu, C.R. Stroud Jr., Phys. Rev. Lett. 64, 2007 (1990)

    Article  ADS  Google Scholar 

  10. M.J.J. Vrakking, D.M. Villeneuve, A. Stolow, Phys. Rev. A 54, R37 (1996)

    Article  ADS  Google Scholar 

  11. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2001)

    Google Scholar 

  12. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  15. E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Commun. 114, 15 (2000)

    Article  ADS  Google Scholar 

  16. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)

    Article  ADS  Google Scholar 

  17. D. Singh, Phys. Rev. B 43, 6388 (1991)

    Article  ADS  Google Scholar 

  18. D.J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer Academic, Boston, 1994)

    Google Scholar 

  19. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.J. Zeiger, J. Vidal, T.K. Cheng, E.P. Ippen, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 45, 768 (1991)

    Article  ADS  Google Scholar 

  21. M.D. Feit, J.A. Fleck, J. Chem. Phys. 78, 301 (1982)

    Article  ADS  Google Scholar 

  22. E.S. Zijlstra, L.L. Tatarinova, M.E. Garcia, Proc. SPIE 6261, 62610R (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eeuwe S. Zijlstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diakhate, M.S., Zijlstra, E.S. & Garcia, M.E. Quantum dynamical study of the amplitude collapse and revival of coherent A 1g phonons in bismuth: a classical phenomenon?. Appl. Phys. A 96, 5–10 (2009). https://doi.org/10.1007/s00339-009-5177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5177-3

PACS

Navigation