Skip to main content
Log in

Modal resonant ultrasound spectroscopy for ferroelastics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recent experimental and theoretical improvements of resonant ultrasound spectroscopy (RUS) are summarized to investigate elastic constants of phases in shape memory alloys. The proposed inversion procedure, described in this work, is particularly suitable to reliable evaluation of the temperature dependence of elastic constants of low-symmetry ferroelastic materials which may be strongly elastically anisotropic and tend to exist in twinned forms. The method is applicable even for the evaluation of single-crystal elastic constants from RUS measurements on microtwinned crystals, since it involves a homogenization algorithm based on the macroscopic deformation response of the layered structure. This potentially allows performing meaningful acoustic studies on samples with a general submicron-size layered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Migliori, J.L. Sarrao, Resonant Ultrasound Spectroscopy (Wiley, New York, 1997)

    Google Scholar 

  2. P.R. Heyliger, H. Ledbetter, I. Reimanis, J. Acoust. Soc. Am. 114, 2618 (2003)

    Article  ADS  Google Scholar 

  3. J.E. Vuorinen, R.B. Schwarz, C. McCullough, J. Acoust. Soc. Am. 108, 574 (2000)

    Article  ADS  Google Scholar 

  4. P.R. Heyliger, J. Acoust. Soc. Am. 107, 1235 (2000)

    Article  ADS  Google Scholar 

  5. L. Ostrovsky, A. Lebedev, A. Matveyev, A. Potapov, A. Sutin, I. Soustova, P. Johnson, J. Acoust. Soc. Am. 110, 1770 (2001)

    Article  ADS  Google Scholar 

  6. R.G. Leisure, K. Foster, J.E. Hightower, D.S. Agosta, Math. Sci. Eng. A 370, 34 (2004)

    Article  Google Scholar 

  7. S. Petit, Ultrasonics 43, 802 (2005)

    Article  Google Scholar 

  8. K.E.-A. Van Den Abeele, P.A. Johnson, A. Sutin, Res. Nondestruct. Eval. 12, 17 (2000)

    ADS  Google Scholar 

  9. K.E.-A. Van Den Abeele, J. Acoust. Soc. Am. 122, 73 (2007)

    Article  ADS  Google Scholar 

  10. H. Ogi, K. Sato, T. Asada, M. Hirao, J. Acoust. Soc. Am. 112, 2553 (2002)

    Article  ADS  Google Scholar 

  11. P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Šittner, L. Mañosa, Acta Mater. 53, 3643 (2005)

    Article  Google Scholar 

  12. M. Landa, V. Novák, P. Sedlák, L. Mañosa, P. Šittner, Material Science Forum. Trans. Tech. Publ. 351 (2005)

  13. H. Seiner, P. Sedlák, M. Landa, in Proceedings of 2006 IEEE International Ultrasonics Symposium, October 3–6, 2006, Vancouver (Canada), CD-ROM

  14. M. Landa, P. Sedlák, H. Seiner, L. Bicanová, P. Šittner, V. Novák, in Proceedings of International Congress on Ultrasonics, April 9–12, 2007, Vienna (Austria), CD-ROM (http://www.icultrasonics.org/)

  15. H.H. Demarest Jr., J. Acoust. Soc. Am. 49, 768 (1971)

    Article  ADS  Google Scholar 

  16. W.M. Visscher, A. Migliori, T.M. Bell, R.A. Reinert, J. Acoust. Soc. Am. 90, 2154 (1991)

    Article  ADS  Google Scholar 

  17. I. Ohno, J. Phys. Earth 24, 355 (1976)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Landa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landa, M., Sedlák, P., Seiner, H. et al. Modal resonant ultrasound spectroscopy for ferroelastics. Appl. Phys. A 96, 557–567 (2009). https://doi.org/10.1007/s00339-008-5047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5047-4

PACS

Navigation