Skip to main content
Log in

Generation of CdS clusters using laser ablation: the role of wavelength and fluence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation of cationic clusters in the laser ablation of CdS targets has been investigated as a function of wavelength and fluence by mass spectrometric analysis of the plume. Ablation was carried out at the laser wavelengths of 1064, 532, 355, and 266 nm in order to scan the interaction regimes below and above the energy band gap of the material. In all cases, the mass spectra showed stoichiometric Cd n S + n and nonstoichiometric Cd n S + n−1 , Cd n S + n+1 , and Cd n S + n+2 clusters up to 4900 amu. Cluster size distributions were well represented by a log-normal function, although larger relative abundance for clusters with n=13, 16, 19, 34 was observed (magic numbers). The laser threshold fluence for cluster observation was strongly dependent on wavelength, ranging from around 16 mJ/cm2 at 266 nm to more than 300 mJ/cm2 at 532 and 1064 nm. According to the behavior of the detected species as a function of fluence, two distinct families were identified: the “light” family containing S +2 and Cd+ and the “heavy” clusterized family grouping Cd +2 and Cd n S + m . In terms of fluence, it has been determined that the best ratio for clusterization is achieved close to the threshold of appearance of clusters at all wavelengths. At 1064, 532, and 355 nm, the production of “heavy” cations as a function of fluence showed a maximum, indicating the participation of competitive effects, whereas saturation is observed at 266 nm. In terms of relative production, the contribution of the “heavy” family to the total cation signal was significantly lower for 266 nm than for the longer wavelengths. Irradiation at 355 nm in the fluence region of 200 mJ/cm2 has been identified as the optimum for the generation of large clusters in CdS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  2. S. Kar, S. Chaudhuri, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 289 (2006)

    Article  Google Scholar 

  3. A. Morales, C. Lieber, Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  4. W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis, Appl. Surf. Sci. 154, 345 (2000)

    Article  ADS  Google Scholar 

  5. M. Ashfold, F. Claeyssens, G. Fuge, S. Henley, Chem. Soc. Rev. 33, 23 (2004)

    Article  Google Scholar 

  6. J. Miller, R. Haglund (eds.), Laser Ablation and Desorption, vol. 30 (Academic Press, San Diego, 1998)

    Google Scholar 

  7. J. Miller (ed.), Laser Ablation—Principles and Applications (Springer, Berlin, 1994)

    Google Scholar 

  8. K. Abe, O. Eryu, S. Nakashima, M. Terai, M. Kubo, M. Niraula, K. Yasuda, J. Electron. Mater. 34, 1428 (2005)

    Article  ADS  Google Scholar 

  9. A. Burnin, J.J. BelBruno, Chem. Phys. Lett. 362, 341 (2002)

    Article  ADS  Google Scholar 

  10. A. Giardini Guidoni, A. Mele, G. Pizzella, R. Teghil, Appl. Surf. Sci. 69, 161 (1993)

    Article  ADS  Google Scholar 

  11. M. Kelly, G. Gomlak, V. Panayotov, C. Cresson, J. Rodney, B. Koplitz, Appl. Surf. Sci. 127–129, 988 (1998)

    Article  Google Scholar 

  12. P. Key, D. Sands, F. Wagner, Mater. Sci. Forum 173–174, 59 (1995)

    Article  Google Scholar 

  13. M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, K. Dreisewerd, Appl. Phys. A 78, 641 (2004)

    Article  ADS  Google Scholar 

  14. D. Lowndes, C. Rouleau, T. Thundat, G. Duscher, E. Kenik, S. Pennycook, J. Mater. Res. 14, 359 (1999)

    Article  ADS  Google Scholar 

  15. T. Orii, M. Hirasawa, T. Seto, J. Phys. Conf. Ser. 59, 716 (2007)

    Article  ADS  Google Scholar 

  16. A. Namiki, K. Watabe, H. Fukano, S. Nishigaki, T. Noda, J. Appl. Phys. 54, 3443 (1983)

    Article  ADS  Google Scholar 

  17. A. Namiki, K. Watabe, H. Fukano, S. Nishigaki, T. Noda, Surf. Sci. 128, L243 (1983)

    Article  ADS  Google Scholar 

  18. A. Namiki, H. Fukano, T. Kawai, Y. Yasuda, T. Nakamura, J. Phys. Soc. Jpn. 54, 3162 (1985)

    Article  ADS  Google Scholar 

  19. A. Namiki, T. Kawai, K. Ichige, Surf. Sci. 166, 129 (1986)

    Article  ADS  Google Scholar 

  20. C. Cali, F. La Rosa, G. Targia, D. Robba, J. Appl. Phys. 78, 6265 (1995)

    Article  ADS  Google Scholar 

  21. M. Jadraque, J. Alvarez, R. de Nalda, M. Martin, Appl. Surf. Sci. 253, 6339 (2007)

    Article  ADS  Google Scholar 

  22. E. Sanville, A. Burnin, J. BelBruno, J. Phys. Chem. A 110, 2378 (2006)

    Article  Google Scholar 

  23. C. Wang, R. Huang, Z. Liu, L. Zheng, Chem. Phys. Lett. 227, 103 (1994)

    Article  ADS  Google Scholar 

  24. T.P. Martin, Phys. Rep. 273, 199 (1996)

    Article  ADS  Google Scholar 

  25. J.M. Matxain, J.E. Fowler, J.M. Ugalde, Phys. Rev. A 61, 053201 (2000)

    Article  ADS  Google Scholar 

  26. A. Burnin, E. Sanville, J.J. BelBruno, J. Phys. Chem. A 109, 5026 (2005)

    Article  Google Scholar 

  27. J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, J. Phys. Chem. A 108, 10502 (2004)

    Article  Google Scholar 

  28. R.E. Rocheleau, B.N. Baron, T.W.F. Russell, AlChE J. 28, 656 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Álvarez-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Ruiz, J., López-Arias, M., de Nalda, R. et al. Generation of CdS clusters using laser ablation: the role of wavelength and fluence. Appl. Phys. A 95, 681–687 (2009). https://doi.org/10.1007/s00339-008-4967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4967-3

PACS

Navigation