Skip to main content
Log in

Energy band and electron-vibration coupling in organic thin films: photoelectron spectroscopy as a powerful tool for studying the charge transport

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article describes the origins of the width of the highest occupied molecular orbital (HOMO) state observed in the ultraviolet photoemission spectra (UPS) of thin organic semiconductor films. Although much research has been performed on the electrical properties of organic devices, a lot of crucial problems still remain. Among these problems, the charge mobility in organic semiconductor systems is one the most important subjects to be elucidated. In order to discuss the mobility, it is essential to understand both the intermolecular interaction and the electron-molecular vibration coupling. Experimental measurements of the energy band dispersion give information about the intermolecular interaction, and experimental detection of the HOMO hole-vibration coupling is indispensable to comprehend impacts of the electron-vibration coupling on the hole transport. Since most of the information is hidden behind the finite bandwidth of the HOMO, only careful UPS measurements can provide information on these important phenomena related to charge carrier dynamics. In this article, we summarize our recent challenges on UPS measurements of organic thin films, which give the band dispersion of the HOMO and the HOMO hole-vibration coupling, and discuss the origins of the UPS bandwidth that relates to the charge carrier dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Akamatsu, H. Inokuchi, J. Chem. Phys. 18, 810 (1950)

    Article  ADS  Google Scholar 

  2. H. Akamatsu, H. Inokuchi, Y. Matsunaga, Nature (London) 173, 168 (1954)

    Article  ADS  Google Scholar 

  3. H. Inokuchi, Org. Electron. 7, 62 (2006)

    Article  Google Scholar 

  4. Conjugated Polymers and Molecular Interfaces, in Science and Technology for Photonic and Optoelectronic Applications, ed. by W.R. Salaneck, K. Seki, A. Kahn, J.-J. Pireaux (Marcel Dekker, New York, 2002)

    Google Scholar 

  5. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)

    Article  Google Scholar 

  6. H. Yamane, S. Kera, D. Yoshimura, K.K. Okudaira, K. Seki, N. Ueno, Phys. Rev. B 68, 033102 (2003)

    Article  ADS  Google Scholar 

  7. A. Schoell, Y. Zou, T. Schmidt, R. Fink, E. Umbach, J. Phys. Chem. B 108, 14741 (2004)

    Article  Google Scholar 

  8. N. Koch, Chem. Phys. Chem. 8, 1438 (2007)

    Google Scholar 

  9. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984)

    Article  ADS  Google Scholar 

  10. H. Vazquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Perez, F. Flores, A. Kahn, Europhys. Lett. 65, 802 (2004)

    Article  ADS  Google Scholar 

  11. H. Meier, in Organic Semiconductors, vol. 2, ed. by H.F. Ebel (Verlag Chemie, Weinheim, 1974), Chap. 10

    Google Scholar 

  12. J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

    Article  Google Scholar 

  13. K. Seki, Y. Harada, K. Ohno, H. Inokuchi, Bull. Chem. Soc. Jpn. 47, 1608 (1974)

    Article  Google Scholar 

  14. W.R. Salaneck, Phys. Rev. Lett. 40, 60 (1978)

    Article  ADS  Google Scholar 

  15. W.R. Salaneck, C.B. Duke, W. Eberhardt, E.W. Plummer, H.J. Freund, Phys. Rev. Lett. 45, 280 (1980)

    Article  ADS  Google Scholar 

  16. S. Hasegawa, T. Mori, K. Imaeda, S. Tanaka, Y. Yamashita, H. Inokuchi, H. Fujimoto, K. Seki, N. Ueno, J. Chem. Phys. 100, 6969 (1994)

    Article  ADS  Google Scholar 

  17. G.N. Gavrila, H. Mendez, T.U. Kampen, D.R.T. Zahn, D.V. Vyalikh, W. Braun, Appl. Phys. Lett. 85, 4657 (2004)

    Article  ADS  Google Scholar 

  18. H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007)

    Article  ADS  Google Scholar 

  19. S. Kera, H. Yamane, I. Sakuragi, K.K. Okudaira, N. Ueno, Chem. Phys. Lett. 364, 93 (2002)

    Article  ADS  Google Scholar 

  20. U. Hoefer, M.J. Breitschafter, E. Umbach, Phys. Rev. Lett. 64, 3050 (1990)

    Article  ADS  Google Scholar 

  21. M. Bertolo, W. Hansen, K. Jacobi, Phys. Rev. Lett. 67, 1898 (1991)

    Article  ADS  Google Scholar 

  22. O. Bjoerneholm, H. Tillborg, A. Nilsson, N. Matensson, H. Ågren, C.M. Liegener, Phys. Rev. Lett. 73, 2551 (1994)

    Article  ADS  Google Scholar 

  23. H. Yamane, H. Honda, H. Fukagawa, M. Ohyama, Y. Hinuma, S. Kera, K.K. Okudaira, N. Ueno, J. Electron Spectrosc. Relat. Phenom. 137–140, 223 (2004)

    Article  Google Scholar 

  24. S. Kera, H. Yamane, H. Honda, H. Fukagawa, K.K. Okudaira, N. Ueno, Surf. Sci. 566–568, 571 (2004)

    Article  Google Scholar 

  25. H. Yamane, H. Fukagawa, H. Honda, S. Kera, K.K. Okudaira, N. Ueno, Synth. Met. 152, 297–300 (2005)

    Article  Google Scholar 

  26. H. Fukagawa, H. Yamane, S. Kera, K.K. Okudaira, N. Ueno, J. Electron Spectrosc. Relat. Phenom. 144–147, 475 (2005)

    Article  Google Scholar 

  27. H. Yamane, Y. Yabuuchi, H. Fukagawa, S. Kera, K.K. Okudaira, N. Ueno, J. Appl. Phys. 99, 093705 (2006)

    Article  ADS  Google Scholar 

  28. H. Fukagawa, H. Yamane, S. Kera, K.K. Okudaira, N. Ueno, IPAP Conf. Ser. 6, 73 (2005)

    Article  Google Scholar 

  29. H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K.K. Okudaira, N. Ueno, Phys. Rev. B 72, 153412 (2005)

    Article  ADS  Google Scholar 

  30. R. Friedlein, H. Yamane, H. Fukagawa, S. Kera, N. Ueno, unpublished

  31. V. Ápek, E.A. Silinsh, Chem. Phys. 200, 309 (1995)

    Article  Google Scholar 

  32. F. Evangelista, V. Carravetta, G. Stefani, B. Jansik, M. Alagia, S. Stranges, A. Ruocco, J. Chem. Phys. 126, 124709 (2007)

    Article  ADS  Google Scholar 

  33. H. Fukagawa, H. Yamane, S. Kera, K.K. Okudaira, N. Ueno, Phys. Rev. B 73, 041302 (2006)

    Article  ADS  Google Scholar 

  34. S. Kera, H. Fukagawa, T. Kataoka, S. Hosoumi, H. Yamane, N. Ueno, Phys. Rev. B 75, 121305 (2007)

    Article  ADS  Google Scholar 

  35. S. Kera, K.K. Okudaira, Y. Harada, N. Ueno, Jpn. J. Appl. Phys. 40, 783 (2001)

    Article  ADS  Google Scholar 

  36. S. Kera, Y. Yabuuchi, H. Yamane, H. Setoyama, K.K. Okudaira, A. Kahn, N. Ueno, Phys. Rev. B 70, 085304 (2004)

    Article  ADS  Google Scholar 

  37. T. Munakata, T. Sugiyama, T. Masuda, M. Aida, N. Ueno, Appl. Phys. Lett. 85, 3584 (2004)

    Article  ADS  Google Scholar 

  38. S. Kera, H. Setoyama, M. Onoue, K.K. Okudaira, Y. Harada, N. Ueno, Phys. Rev. B 63, 115204 (2001)

    Article  ADS  Google Scholar 

  39. J.T. Sadowski, T. Nagao, S. Yaginuma, Y. Fujikawa, A. Al-Mahboob, K. Nakajima, T. Sakurai, G.E. Thayer, R.M. Tromp, Appl. Phys. Lett. 86, 073109 (2005)

    Article  ADS  Google Scholar 

  40. G.E. Thayer, J.T. Sadowski, F.M.Z. Heringdorf, T. Sakurai, R.M. Tromp, Phys. Rev. Lett. 95, 256106 (2005)

    Article  ADS  Google Scholar 

  41. R.B. Cambell, J.M. Robertson, J. Trotter, Acta Crystallogr. 14, 705 (1961)

    Article  Google Scholar 

  42. R.B. Cambell, J.M. Robertson, J. Trotter, Acta Crystallogr. 15, 289 (1962)

    Article  Google Scholar 

  43. T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E.V. Chulkov, Yu.M. Koroteev, P.M. Echenique, M. Saito, S. Hasegawa, Phys. Rev. Lett. 97, 146803 (2006)

    Article  ADS  Google Scholar 

  44. K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 72, 205205 (2005)

    Article  ADS  Google Scholar 

  45. N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, J.P. Rabe, Phys. Rev. Lett. 96, 156803 (2006)

    Article  ADS  Google Scholar 

  46. H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, N. Ueno, Phys. Rev. B 73, 245310 (2006)

    Article  ADS  Google Scholar 

  47. V. Coropceanu, M. Malagoli, D.A. da Silva Filho, N.E. Gruhn, T.G. Bill, J.L. Brédas, Phys. Rev. Lett. 89, 275503 (2002)

    Article  ADS  Google Scholar 

  48. V. Coropceanu, J.M. Andre, M. Malagoli, J.L. Brédas, Theor. Chem. Acc. 110, 59 (2003)

    Google Scholar 

  49. M. Malagoli, V. Coropceanu, D.A. Da Silva Filho, J.L. Brédas, J. Chem. Phys. 120, 7490 (2004)

    Article  ADS  Google Scholar 

  50. H. Hövel, B. Grimm, M. Pollmann, B. Reihl, Phys. Rev. Lett. 81, 4608 (1998)

    Article  ADS  Google Scholar 

  51. H. Fukagawa, S. Kera, T. Kataoka, S. Hosoumi, Y. Watanabe, K. Kudo, N. Ueno, Adv. Mater. 19, 665 (2007)

    Article  Google Scholar 

  52. N. Ueno, S. Kera, H. Fukagawa, in Proceeding of SPIE, Vol. 6656 (SPIE, Bellingham, 2007), p. 0D-1-9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, N., Kera, S., Sakamoto, K. et al. Energy band and electron-vibration coupling in organic thin films: photoelectron spectroscopy as a powerful tool for studying the charge transport. Appl. Phys. A 92, 495–504 (2008). https://doi.org/10.1007/s00339-008-4553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4553-8

PACS

Navigation