Skip to main content
Log in

Study of graded Ni-Ti shape memory alloy film growth on Si(100) substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In-situ X-ray diffraction (XRD) was employed to study the effect of the deliberate change of the Ti/Ni ratio during the deposition of Ni-Ti films. Thus, graded films were deposited exhibiting distinctive composition and crystalline structure along the growth direction. The as-sputtered films were ex-situ characterized by Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (XTEM), and electrical resistivity (ER) measurements (during thermal cycling). In this paper results are presented concerning a film (thickness of ≈ 420 nm) with a Ti-rich composition in the central part (ranging from 50 to ≈60 at. %) and near-equiatomic composition in the extremities, following four distinct deposition periods (different Ti target powers). During the initial deposition step (near-equiatomic composition) the Ni-Ti B2 phase starts by stacking onto (h00) planes on the naturally oxidized Si(100) substrate due to the presence of the native Si oxide (2–3 nm). The increase of the power of the Ti target in the second and third steps induced the precipitation of Ti2Ni. When stopping the Ti co-sputtering, Ti2Ni dissolves and, thus, plays the role of a Ti reservoir for the formation of B2 phase now preferentially stacking onto (110) with the system approaching again the equiatomic composition. The ex-situ study of the morphology of the interface has shown the presence of NiSi2 silicides (A-NiSi2 and B-NiSi2), Ti4Ni4Si7, Ti2Ni and a non-identified phase constituted by Ni, Ti and Si, most likely amorphous. During thermal cycling, ER measurements revealed phase transitions associated with the B2, R-phase and B19 phases. These type of studies allow the identification of intermediate states during deposition and annealing, and the correlation with the final structure of the film, being useful for the optimisation of the deposition parameters in order to fabricate films with a two-way reversible actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka, T. Kakeshita, MRS Bull. 27, 91 (2002)

    Google Scholar 

  2. K. Otsuka, X. Ren, Prog. Mater. Sci. 50, 511 (2005)

    Article  Google Scholar 

  3. R.H. Wolf, A.H. Heuer, J. Microelectromech. Syst. 4, 206 (1995)

    Article  Google Scholar 

  4. P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, J. Microelectromech. Syst. 5, 270 (1996)

    Article  Google Scholar 

  5. H. Kahn, M.A. Huff, A.H. Heuer, J. Micromech. Microeng. 8, 213 (1998)

    Article  ADS  Google Scholar 

  6. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actuators A 112, 395 (2004)

    Article  ADS  Google Scholar 

  7. M. Bendahan, K. Aguir, J.L. Seguin, H. Carchano, Sens. Actuators 74, 242 (1999)

    Article  Google Scholar 

  8. J.A. Walker, K.J. Gabriel, M. Mehregany, Sens. Actuators A 2123, 243 (1990)

    Google Scholar 

  9. J.D. Busch, A.D. Johnson, C.H. Lee, D.A. Stevenson, J. Appl. Phys. 68, 6224 (1990)

    Article  ADS  Google Scholar 

  10. A.P. Jardine, H. Zhang, L.D. Wasielesky, Mater. Res. Soc. Symp. Proc. 187, 181 (1990)

    Google Scholar 

  11. J.D. Johnson, J. Micromech. Microeng. 1, 34 (1991)

    Article  ADS  Google Scholar 

  12. A.P. Jardine, J. Vac. Sci. Technol. A 13, 1058 (1995)

    Article  ADS  Google Scholar 

  13. A. Ishida, V. Martynov, MRS Bull. 27, 111 (2002)

    Google Scholar 

  14. B. Winzek, S. Schmitz, H. Rumpf, T. Sterzl, R. Hassdorf, S. Thienhaus, J. Feydt, M. Moske, E. Quandt, Mater. Sci. Eng. A 378, 40 (2004)

    Article  Google Scholar 

  15. K.K. Ho, K.P. Mohanchandra, G.P. Carman, Thin Solid Films 413, 1 (2002)

    Article  ADS  Google Scholar 

  16. C.-L. Shih, B.-K. Lai, H. Kahn, S.M. Phillips, A.H. Heuer, J. Microelectromech. Syst. 10, 69 (2001)

    Article  Google Scholar 

  17. S. Miyazaki, A. Ishida, Mater. Sci. Eng. A 273275, 106 (1999)

    Google Scholar 

  18. R.M.S. Martins, N. Schell, R.J.C. Silva, L. Pereira, K.K. Mahesh, F.M.B. Fernandes, Sens. Actuators B 126, 332 (2007)

    Article  Google Scholar 

  19. A. Ohta, S. Bhansali, I. Kishimoto, A. Umeda, Sens. Actuators A 86, 165 (2000)

    Article  Google Scholar 

  20. S. Sanjabi, Y.Z. Cao, S.K. Sadrnezhaad, Z.H. Barber, J. Vac. Sci. Technol. A 23, 1425 (2005)

    Article  ADS  Google Scholar 

  21. K.K. Ho, G.P. Carman, Thin Solid Films 370, 18 (2000)

    Article  ADS  Google Scholar 

  22. D. Shindo, Y. Murakami, T. Ohba, MRS Bull. 27, 121 (2002)

    Google Scholar 

  23. H. Sitepu, W.W. Schmahl, D.M. Toebbens, Textures Microstruct. 35, 185 (2003)

  24. T. Goryczka, H. Morawiec, J. Alloys Compd. 367, 137 (2004)

    Article  Google Scholar 

  25. J. Khalil-Allafi, W.W. Schmahl, D.M. Toebbens, Acta Mater. 54, 3171 (2006)

    Article  Google Scholar 

  26. P. Šittner, M. Landa, P. Lukáš, V. Novák, Mech. Mater. 38, 475 (2006)

    Google Scholar 

  27. J.-M. Ting, P. Chen, J. Vac. Sci. Technol. A 19, 2382 (2001)

    Article  ADS  Google Scholar 

  28. J.Z. Chen, S.K. Wu, J. Non-Cryst. Solids 288, 159 (2001)

    Article  ADS  Google Scholar 

  29. H.-J. Lee, H. Ni, D.T. Wu, A.G. Ramirez, Appl. Phys. Lett. 87, 114102-1 (2005)

    Google Scholar 

  30. H.-J. Lee, H. Ni, D.T. Wu, A.G. Ramirez, Appl. Phys. Lett. 87, 124102 (2005)

    Article  ADS  Google Scholar 

  31. R.M.S. Martins, F.M.B. Fernandes, R.J.C. Silva, L. Pereira, P.R. Gordo, M.J.P. Maneira, M. Beckers, A. Mücklich, N. Schell, Appl. Phys. A 83, 139 (2006)

    Article  ADS  Google Scholar 

  32. I.-J. Kim, H. Nanjo, T. Iijima, T. Abe, Japan. J. Appl. Phys. 39, 568 (2000)

    Article  ADS  Google Scholar 

  33. R.M.S. Martins, N. Schell, M. Beckers, R.J.C. Silva, K.K. Mahesh, F.M.B. Fernandes, Mater. Sci. Eng. A, DOI:10.1016/j.msea.2006.12.225 (2007)

  34. Y.S. Liu, D. Xu, B.H. Jiang, Z.Y. Yuan, P. van Houtte, J. Micromech. Microeng. 15, 575 (2005)

    Article  ADS  Google Scholar 

  35. K.R.C. Gisser, J.D. Busch, A.D. Johnson, A.B. Ellis, Appl. Phys. Lett. 61, 1632 (1992)

    Article  ADS  Google Scholar 

  36. R.M.S. Martins, N. Schell, M. Beckers, K.K. Mahesh, R.J.C. Silva, F.M.B. Fernandes, Appl. Phys. A 84, 285 (2006)

    Article  ADS  Google Scholar 

  37. W. Matz, N. Schell, W. Neumann, J. Bøttiger, J. Chevallier, Rev. Sci. Instrum. 72, 3344 (2001)

    Article  ADS  Google Scholar 

  38. W. Matz, N. Schell, G. Bernhard, F. Prokert, T. Reich, J. Claußner, W. Oehme, R. Schlenk, S. Dienel, H. Funke, F. Eichhorn, M. Betzl, D. Pröhl, U. Strauch, G. Hüttig, H. Krug, W. Neumann, V. Brendler, P. Reichel, M.A. Denecke, H. Nitsche, J. Synchroton Radiat. 6, 1076 (1999)

  39. P. Surbled, C. Clerc, B.L. Pioufle, M. Ataka, H. Fujita, Thin Solid Films 401, 52 (2001)

    Article  ADS  Google Scholar 

  40. A.S. Paula, J.H.P.G. Canejo, K.K. Mahesh, R.J.C. Silva, F.M.B. Fernandes, R.M.S. Martins, A.M.A. Cardoso, N. Schell, Nucl. Instrum. Methods B 246, 206 (2006)

    Article  ADS  Google Scholar 

  41. M.J. Vestel, D.S. Grummon, Mater. Sci. Eng. A 378, 437 (2004)

    Article  Google Scholar 

  42. J.X. Zhang, M. Sato, A. Ishida, Acta Mater. 51, 3121 (2003)

    Article  Google Scholar 

  43. N. Schell, R.M.S. Martins, F.M.B. Fernandes, Appl. Phys. A 81, 1441 (2005)

    Article  ADS  Google Scholar 

  44. S. Stemmer, G. Duscher, C. Scheu, A.H. Heuer, M. Rühle, J. Mater. Res. 12, 1734 (1997)

    ADS  Google Scholar 

  45. S.K. Wu, J.Z. Chen, Y.J. Wu, J.Y. Wang, M.N. Yu, F.R. Chen, J.J. Kai, Philos. Mag. A 81, 1939 (2001)

    Article  ADS  Google Scholar 

  46. D. Wan, K. Komvopoulos, J. Mater. Res. 20, 1606 (2005)

    Article  ADS  Google Scholar 

  47. A. Steegen, K. Maex, Mater. Sci. Eng. R 38, 1 (2002)

    Article  Google Scholar 

  48. C.J. Tsai, K.H. Yu, Thin Solid Films 350, 91 (1999)

    Article  ADS  Google Scholar 

  49. D.S. Grummon, J. Zhang, Phys. Stat. Solidi A 186, 17 (2001)

    Article  ADS  Google Scholar 

  50. J.-M. Zhang, F. Ma, K.-W. Xu, Surf. Interf. Anal. 35, 662 (2003)

    Article  Google Scholar 

  51. A. Ishida, K. Ogawa, M. Sato, S. Miyazaki, Metall. Mater. Trans. A 28, A1985 (1997)

  52. U. Falke, F. Fenske, S. Schulze, M. Hietschold, Phys. Stat. Solidi A 162, 615 (1997)

    Article  ADS  Google Scholar 

  53. E. Horache, J. Van Der Spiegel, J.E. Fischer, Thin Solid Films 177, 263 (1989)

    Article  ADS  Google Scholar 

  54. T.-H. Nam, J.-H. Kim, M.-S. Choi, H.-W. Lee, Y.-W. Kim, J. Phys. IV 112, 893 (2003)

    Article  Google Scholar 

  55. A.D. Johnson, M. Fanucchi, V. Gupta, V. Martynov, V. Galhotra, K. Clements, “TiNi as a nano-actuator, experimental verification of excitation by electron-beam heating” (2003); http://www.innovation-on-demand.com/Papers/Nanoactuation_Paper.htm

  56. Q. Su, S.Z. Hua, M. Wuttig, J. Alloys Compd. 211/212, 460 (1994)

    Google Scholar 

  57. Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, W.I. Milne, Thin Solid Films 515, 80 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.M.S. Martins.

Additional information

PACS

81.15.Cd; 61.10.Nz; 68.55.Jk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, R., Schell, N., Mücklich, A. et al. Study of graded Ni-Ti shape memory alloy film growth on Si(100) substrate. Appl. Phys. A 91, 291–299 (2008). https://doi.org/10.1007/s00339-008-4397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4397-2

Keywords

Navigation