Skip to main content

Advertisement

Log in

Mechanical properties of polymer nanostructures: measurements based on deformation in response to capillary forces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Arrays of test structures consisting of sub-150 nm wide beams were lithographically fabricated in poly(methyl methacrylate) (PMMA) and used to measure the elastic mechanical properties of the material. Capillary forces that arise during the drying of rinse liquids from the test structures caused the nanoscale polymer beams to deform. The initial capillary forces were defined by the test structure geometry, and the magnitudes of the forces were quantified using a two-dimensional Young–Laplace equation. The deformation of the nanostructured beams was measured experimentally and compared to a model based on continuum-level bending beam mechanics, thereby enabling the calculation of the Young’s modulus (E) of the material. For PMMA beams greater than 100 nm in width E was calculated to be 5.1 GPa at room temperature, which corresponds closely to the elastic modulus of bulk PMMA. The Young’s moduli of structures with dimensions less than 100 nm were measured to be less than the bulk value and the origin of the decrease is discussed in terms of dimension dependent properties and polymer degradation during fabrication. The polymer nanostructures also were determined to mechanically deform more readily with increasing characterization temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (ITRS) 2005 Ed. (Semicon. Indus. Ass., San Jose, CA 2005)

  2. J.N. Helbert, T. Dack, Handbook of VLSI Microlithography, 2nd Ed. (Noyes/William Andrews, LLC, Norwich, NY 2001)

  3. D. Bellet, L. Canham, Adv. Mater. 10, 487 (1998)

    Article  Google Scholar 

  4. T. Tanaka, M. Morigami, N. Atoda, J. Electrochem. Soc. 140, L115 (1993)

    Article  Google Scholar 

  5. T. Tanaka, M. Morigami, N. Atoda, Japan. J. Appl. Phys. 32, 6059 (1993)

    Article  ADS  Google Scholar 

  6. H.B. Cao, P.F. Nealey, W.D. Domke, J. Vac. Sci. Technol. B 18, 3303 (2000)

    Article  Google Scholar 

  7. M.P. Stoykovich, H.B. Cao, K. Yoshimoto, L.E. Ocola, P.F. Nealey, Adv. Mater. 15, 1180 (2003)

    Article  Google Scholar 

  8. K. Yoshimoto, M.P. Stoykovich, H.B. Cao, J.J. de Pablo, P.F. Nealey, W.J. Drugan, J. Appl. Phys. 96, 1857 (2004)

    Article  ADS  Google Scholar 

  9. H. Namatsu, K. Kurihara, M. Nagase, K. Iwadate, K. Murase, Appl. Phys. Lett. 66, 2655 (1995)

    Article  ADS  Google Scholar 

  10. J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, G. de With, Mater. Sci. Eng. R 36, 47 (2002)

    Article  Google Scholar 

  11. G.M. Pharr, W.C. Oliver, MRS Bull. 7, 28 (1992)

    Google Scholar 

  12. J.M.G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2nd edn. (Chapman and Hall, Great Britain, 1991)

  13. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)

    Article  Google Scholar 

  14. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994)

    Article  Google Scholar 

  15. W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995)

    Article  ADS  Google Scholar 

  16. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)

    Article  ADS  Google Scholar 

  17. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997)

    Article  ADS  Google Scholar 

  18. J. Mattsson, J.A. Forrest, L. Böorjesson, Phys. Rev. E 62, 5187 (2000)

    Article  ADS  Google Scholar 

  19. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000)

    Article  Google Scholar 

  20. J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000)

    Article  ADS  Google Scholar 

  21. D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)

    Article  Google Scholar 

  22. R.S. Tate, D.S. Fryer, S. Pasqualini, M. Montague, J.J. de Pablo, P.F. Nealey, J. Chem. Phys. 115, 9982 (2001)

    Article  ADS  Google Scholar 

  23. T.S. Jain, J.J. de Pablo, J. Chem. Phys. 120, 9371 (2004)

    Article  ADS  Google Scholar 

  24. C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003)

    Article  ADS  Google Scholar 

  25. C.W. Frank, V. Rao, M.M. Despotopoulou, R.F.W. Pease, W.D. Hinsberg, R.D. Miller, J.F. Rabolt, Science 273, 912 (1996)

    Article  ADS  Google Scholar 

  26. D.B. Hall, J.M. Torkelson, Macromolecules 31, 8817 (1998)

    Article  Google Scholar 

  27. B. Frank, A.P. Gast, T.P. Russell, H.R. Brown, C.J. Hawker, Macromolecules 29, 6531 (1996)

    Article  Google Scholar 

  28. T.R. Böhme, J.J. de Pablo, J. Chem. Phys. 116, 9939 (2002)

    Article  ADS  Google Scholar 

  29. K. van Workum, J.J. de Pablo, Nano Lett. 3, 1405 (2003)

    Article  Google Scholar 

  30. K. Yoshimoto, T.S. Jain, P.F. Nealey, J.J. de Pablo, J. Chem. Phys. 122, 144712 (2005)

    Article  Google Scholar 

  31. C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Macromolecules 39, 5095 (2006)

    Article  Google Scholar 

  32. B. Briscoe, L. Fiori, E. Pelillo, J. Phys. D 31, 2395 (1998)

    Article  ADS  Google Scholar 

  33. M. Radmacher, R.W. Tillmann, M. Fritz, H.E. Gaub, Science 257, 1900 (1992)

    Article  ADS  Google Scholar 

  34. C.G. Simon Jr., N. Eidelman, Y. Deng, N.R. Washburn, Macromol. Rapid Commun. 25, 2003 (2004)

    Article  Google Scholar 

  35. C.A. Tweedie, D.G. Anderson, R. Langer, K.J. Van Vliet, Adv. Mater. 17, 2599 (2005)

    Article  Google Scholar 

  36. A.G. Every, Meas. Sci. Technol. 13, R21 (2002)

    Article  ADS  Google Scholar 

  37. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 58, 6109 (1998)

    Article  ADS  Google Scholar 

  38. R. Hartschuh, Y. Ding, J.H. Roh, A. Kisliuk, A.P. Sokolov, C.L. Soles, R.L. Jones, T.J. Hu, W.L. Wu, A.P. Mahorowala, J. Polym. Sci. B Polym. Phys. 42, 1106 (2004)

    Article  Google Scholar 

  39. W. Cheng, G. Fytas, A.V. Kiyanova, M.Y. Efremov, P.F. Nealey, Macromol. Rapid Commun. 27, 702 (2006)

    Article  Google Scholar 

  40. R. Hotz, J.K. Krüger, W. Possart, R. Tadros-Morgane, J. Phys.: Condens. Matter 13, 7953 (2001)

    Article  ADS  Google Scholar 

  41. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.-C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, Nat. Mater. 3, 545 (2004)

    Article  ADS  Google Scholar 

  42. C.M. Stafford, S. Guo, C. Harrison, M.Y.M. Chang, Rev. Sci. Instrum. 76, 062207 (2005)

    Article  Google Scholar 

  43. H.D. Espinosa, B.C. Prorok, M. Fischer, J. Mech. Phys. Solids 51, 47 (2003)

    Article  Google Scholar 

  44. J.-H. Zhao, M. Kiene, C. Hu, P.S. Ho, Appl. Phys. Lett. 77, 2843 (2000)

    Article  ADS  Google Scholar 

  45. J.-H. Zhao, T. Ryan, P.S. Ho, A.J. McKerrow, W.-Y. Shih, J. Appl. Phys. 88, 3029 (2000)

    Article  ADS  Google Scholar 

  46. The 3D finite element modeling of the deformation of the test structure beams was performed using ANSYS 11 (ANSYS) for beams with H = 500 nm, BW = 100 nm, ΔPi = 4 MPa, and E = 5 GPa similar to the experimental PMMA beams.

  47. W.M. Cheng, G.A. Miller, J.A. Manson, R.W. Hertzberg, L.H. Sperling, J. Mater. Sci. 25, 1917 (1990)

    Article  Google Scholar 

  48. J.A. Johnson, D.W. Jones, J. Mater. Sci. 29, 870 (1994)

    Article  Google Scholar 

  49. S.I. Naqui, I.M. Robinson, J. Mater. Sci. 28, 1421 (1993)

    Article  Google Scholar 

  50. M.E. James, Polymer Data Handbook (Oxford, New York, 1999)

    Google Scholar 

  51. R.S. Lakes, Viscoelastic Solids (CRC, Boca Raton, FL, 1999)

    Google Scholar 

  52. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995)

    Article  ADS  Google Scholar 

  53. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  ADS  Google Scholar 

  54. C.J. Ellison, R.L. Ruszkowski, N.J. Fredin, J.M. Torkelson, Phys. Rev. Lett. 92, 095702 (2004)

    Article  ADS  Google Scholar 

  55. W.C. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B 22, 1711 (2004)

    Article  Google Scholar 

  56. B.D. Gates, Q.B. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev. 105, 1171 (2005)

    Article  Google Scholar 

  57. L.E. Ocola, D. Tennant, G. Timp, A. Novembre, J. Vac. Sci. Technol. B 17, 3164 (1999)

    Article  Google Scholar 

  58. F.J. Pantenburg, S. Achenbach, J. Mohr, J. Vac. Sci. Technol. B 16, 3547 (1998)

    Article  Google Scholar 

  59. M.J. Rooks, E. Kratschmer, R. Viswanathan, J. Katine, R.E. Fontana, S.A. MacDonald, J. Vac. Sci. Technol. B 20, 2937 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.F. Nealey.

Additional information

PACS

62.25.+g; 68.35.Gy; 81.16.Nd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoykovich, M., Yoshimoto, K. & Nealey, P. Mechanical properties of polymer nanostructures: measurements based on deformation in response to capillary forces. Appl. Phys. A 90, 277–283 (2008). https://doi.org/10.1007/s00339-007-4262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4262-8

Keywords

Navigation