Skip to main content

Advertisement

Log in

Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Catalytic chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) are treated with HF and deionized water and are then placed into alumina ceramics for improvement of both electrical conductivity and mechanical properties. In particular, an alternating current (ac) electric field is applied during the coagulation of the alumina slurries to induce the formation of aligned MWNT networks in the alumina matrix. The coagulated alumina matrix composite bases filled with 2 wt. % ac electric field-induced aligned MWNTs, are then sintered by hot pressing. The electrical conductivities of the prepared composites in directions both parallel and perpendicular to the MWNTs alignment, reach values of 6.2×10-2 S m-1 and 6.8×10-9 S m-1, respectively, compared with that of 4.5×10-15 S m-1 for pristine alumina ceramics. The fracture toughness and flexing strengths of the prepared composites in the two directions are 4.66±0.66 MPa m0.5, 390±70 MPa, and 3.65±0.46 MPa m0.5, 191±5 MPa, respectively, compared with 3.78±0.66 MPa m0.5 and 302±50 MPa for pristine alumina, 4.09±0.15 MPa m0.5 and 334±60 MPa for alumina filled with 2 wt. % MWNTs prepared without the effect of an electric field, respectively. The results indicate that the electric field leads to anisotropic behaviour. The properties of the composites along the direction of the MWNTs alignment are much improved with the addition of a small amount of CVD grown MWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. J. Sun, L. Gao, X.H. Jin, Ceram. Int. 31, 893 (2005)

    Article  Google Scholar 

  3. J.B. Bai, Carbon 41, 1325 (2003)

    Article  Google Scholar 

  4. T. Laha, A. Agarwal, T. McKechnie, S. Seal, Mater. Sci. Eng. A 381, 249 (2004)

    Article  Google Scholar 

  5. G.D. Zhan, J.D. Kuntz, J. Wan, A.K. Mukherjee, Nature Mater. 2, 38 (2003)

    Article  ADS  Google Scholar 

  6. X.T. Wang, N.P. Padture, H. Tanaka, Nature Mater. 3, 539 (2004)

    Article  ADS  Google Scholar 

  7. B.W. Sheldon, W.A. Curtin, Nature Mater. 3, 505 (2004)

    Article  ADS  Google Scholar 

  8. R.W. Siegel, S.K. Chang, B.J. Ash, J. Stone, P.M. Ajayan, R.W. Doremus, L.S. Schadler, Scripta Mater. 44, 2061 (2001)

    Article  Google Scholar 

  9. J.P. Fan, D.Q. Zhao, M.S. Wu, Z.N. Xu, J. Song, J. Am. Ceram. Soc. 89, 750 (2006)

    Article  Google Scholar 

  10. N. Grossiord, J. Loos, O. Regev, C.E. Koning, Chem. Mater. 18, 1089 (2006)

    Article  Google Scholar 

  11. J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W. Blau, R.C. Barklie, Phys. Rev. B 58, 7492 (1998)

    Article  ADS  Google Scholar 

  12. Y. Long, Z. Chen, X. Zhang, J. Zhang, Z. Liu, J. Phys. D Appl. Phys. 37, 1965 (2004)

    Article  ADS  Google Scholar 

  13. V. Skákalová, U. Dettlaff-Weglikowska, S. Roth, Synth. Met. 152, 349 (2005)

    Article  Google Scholar 

  14. A.W. Musumeci, G.G. Silva, J.W. Liu, W.N. Martens, E.R. Waclawik, Polymer 48, 1667 (2007)

    Article  Google Scholar 

  15. S. Rul, F. Lefèvre-Schlick, E. Capria, C. Laurent, A. Peigney, Acta Mater. 52, 1061 (2004)

    Article  Google Scholar 

  16. Y.Q. Liu, L. Gao, Carbon 43, 47 (2005)

    Article  Google Scholar 

  17. G.D. Zhan, J.D. Kuntz, J.E. Garay, A.K. Mukherjee, Appl. Phys. Lett. 83, 1228 (2003)

    Article  ADS  Google Scholar 

  18. M.V. Swain, Structure and Properties of Ceramics (Materials Science and Technology, Weinheim, New York, Basel, Cambridge, Tokyo, 1994)

  19. M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.-K. Suh, Solid State Electron. 47, 2075 (2003)

    Article  Google Scholar 

  20. X.M. Liu, J.L. Spencer, A.B. Kaiser, W.M. Arnold, Curr. Appl. Phys. 4, 125 (2004)

    Article  Google Scholar 

  21. X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001)

    Article  ADS  Google Scholar 

  22. C.A. Martin, J.K.W. Sandler, A. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Polymer 46, 877 (2005)

    Article  Google Scholar 

  23. T. Prasse, J.Y. Cavaillé, W. Bauhofer, Compos. Sci. Technol. 63, 1835 (2003)

    Article  Google Scholar 

  24. Z. Chen, Y.L. Yang, F. Chen, Q. Qing, Z.Y. Wu, Z.F. Liu, Phys. Chem. Lett. B 109, 11420 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Feng Zhu.

Additional information

PACS

61.46.Fg; 61.66.Fn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, YF., Shi, L., Zhang, C. et al. Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes. Appl. Phys. A 89, 761–767 (2007). https://doi.org/10.1007/s00339-007-4165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4165-8

Keywords

Navigation