Skip to main content
Log in

Cation defects and conductivity in transparent oxides

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused, in part, by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Kukuruznyak, S.-W. Han, M.-H. Lee, K.A. Omland, M.C. Gregg, E.A. Stern, F.S. Ohuchi, J. Vac. Sci. Technol. A 19, 1923 (2001)

    Article  ADS  Google Scholar 

  2. G.J. Exarhos, S.K. Sharma, Thin Solid Films 27, 270 (1995)

    Google Scholar 

  3. G.J. Exarhos, A. Rose, C.F. Windisch Jr., Thin Solid Films 56, 308 (1997)

    Google Scholar 

  4. G.J. Exarhos, A. Rose, L.-Q. Wang, C.F. Windisch Jr., J. Vac. Sci. Technol. A 16, 1926 (1998)

    Article  ADS  Google Scholar 

  5. C.F. Windisch Jr., G.J. Exarhos, J. Vac. Sci. Technol. A 18, 1677 (2000)

    Article  ADS  Google Scholar 

  6. C.F. Windisch Jr., G.J. Exarhos, R.R. Owings, J. Appl. Phys. 95, 5435 (2004)

    Article  ADS  Google Scholar 

  7. C.F. Windisch Jr., G.J. Exarhos, S.K. Sharma, Magnetic Transparent Conducting Oxide Film and Method of Making, U.S. Patent 6,761,985 (July 13, 2004)

  8. C.F. Windisch Jr., G.J. Exarhos, S.K. Sharma, J. Appl. Phys. 92, 5572 (2002)

    Article  ADS  Google Scholar 

  9. R.R. Owings, G.J. Exarhos, C.F. Windisch Jr., P.H. Holloway, J.G. Wen, Thin Solid Films 483, 175 (2005)

    Article  ADS  Google Scholar 

  10. C.F. Windisch Jr., K.F. Ferris, G.J. Exarhos, S.K. Sharma, Thin Solid Films 89, 420 (2002)

    Google Scholar 

  11. L. Liu, K. Bai, H. Gong, P. Wu, Phys. Rev. B 72, 125204 (2005)

    Article  ADS  Google Scholar 

  12. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997)

    Article  ADS  Google Scholar 

  13. J. Tate, M. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager, R.L. Hoffman, Thin Solid Films 411, 119 (2002)

    Article  ADS  Google Scholar 

  14. A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998)

    Article  ADS  Google Scholar 

  15. H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Thin Solid Films 411, 125 (2002)

    Article  ADS  Google Scholar 

  16. C.H. Park, S.B. Zhang, S.-H. Wei, Phys. Rev. B 66, 073202 (2002)

    Article  ADS  Google Scholar 

  17. L.G. Wang, A. Zunger, Phys. Rev. Lett. 90, 256401 (2003)

    Article  ADS  Google Scholar 

  18. P. Wang, N.F. Chen, Z.G. Yin, Appl. Phys. Lett. 88, 152102 (2006)

    Article  ADS  Google Scholar 

  19. Y.H. Yan, Z. An, C.Q. Wu, Eur. Phys. J. B 42, 157 (2004)

    Article  ADS  Google Scholar 

  20. Y. Lu, Solitons and Polarons in Conducting Polymers (World Scientific, Singapore, 1988)

    Google Scholar 

  21. M. Lei, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, J. Phys. Chem. B 107, 9954 (2003)

    Article  Google Scholar 

  22. Y. Nakata, T. Okata, M. Maeda, Appl. Surf. Sci. 197–198, 368 (2002)

    Article  Google Scholar 

  23. D. Guido, L. Cultrera, A. Perrone, Surf. Coat. Technol. 180–181, 603 (2004)

    Article  Google Scholar 

  24. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)

    Article  Google Scholar 

  25. R.R. Owings, P.H. Holloway, G.J. Exarhos, C.F. Windisch Jr., Surf. Interf. Anal. 37, 424 (2005)

    Article  Google Scholar 

  26. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos, Mater. Lett. 10, 6 (1990)

    Article  Google Scholar 

  27. D. Emin, in: C.L. Chien, C.R. Westgate (Eds.), The Hall Effect and its Applications (Plenum Publishing Corp., New York, 1980), p. 281

  28. D. Emin, Phys. Today 35, 34 (1982)

    Article  Google Scholar 

  29. B. Zhang, T. Katsura, A. Shatskiy, T. Matsuzaki, X. Wu, Phys. Rev. B 73, 134104 (2006)

    Article  ADS  Google Scholar 

  30. A. Ghosh, D. Chakravorty, J. Phys. C Condens. Matter 2, 931 (1990)

    Article  ADS  Google Scholar 

  31. E. Iguchi, K. Ueda, W.H. Jung, Phys. Rev. B 54, 17431 (1996)

    Article  ADS  Google Scholar 

  32. D.P. Dobson, N.C. Richmond, J.P. Brodholt, Science 275, 1779 (1997)

    Article  Google Scholar 

  33. K.V. Ramesh, D.L. Sastry, Y. Purushotham, Int. J. Mod. Phys. B 18, 3327 (2004)

    Article  ADS  Google Scholar 

  34. V. Ponnambalam, U.V. Varadaraju, Phys. Rev. B 52, 16213 (1995)

    Article  ADS  Google Scholar 

  35. M. Lenglet, R. Guillamet, J. Dürr, D. Gryffroy, R.E. Vandenberghe, Solid State Commun. 74, 1035 (1990)

    Article  ADS  Google Scholar 

  36. K.J. Kim, H.K. Kim, Y.R. Park, G.Y. Ahn, C.S. Kim, J.Y. Park, IEEE Trans. Magn. 41, 3478 (2005)

    Article  ADS  Google Scholar 

  37. T. Niu, N. Herron, W. Manogue, H. Dindi, Supported Rhodium-Spinel Catalysts and Process for Producing Synthesis Gas, US Patent No. 10078122, issued on August 29, 2006

  38. C.F. Windisch Jr., K.F. Ferris, G.J. Exarhos, J. Vac. Sci. Technol. A 19, 1647 (2001)

    Article  ADS  Google Scholar 

  39. K. Kuriyama, Phys. Rev. B 47, 12415 (1993)

    Article  ADS  Google Scholar 

  40. Y.N. Gartstein, E.M. Conwell, Phys. Rev. B 51, 6947 (1995)

    Article  ADS  Google Scholar 

  41. J.C. Dyre, T.B. Schröder, Phys. Rev. B 54, 14884 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.J. Exarhos.

Additional information

PACS

61.72.C.; 71.38.-k; 81.15.-z; 77.84.Bw; 73.61.-r

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exarhos, G., Windisch Jr., C., Ferris, K. et al. Cation defects and conductivity in transparent oxides. Appl. Phys. A 89, 9–18 (2007). https://doi.org/10.1007/s00339-007-4040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4040-7

Keywords

Navigation