Skip to main content
Log in

Field emission of electrons by carbon nanotube twist-yarns

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu.V. Gulyaev, L.A. Chernozatonskii, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, Le Vide Les Chouches Minces (Suppl. 271) 322 (1994), In 7th Intern. Vacuum Microelectronics Conf. (France, 1994), J. Vac. Sci. Technol. B 13, 435 (1995)

  2. L.A. Chernozatonskii, Yu.V. Gulyaev, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, In 8th Intern. Vacuum Microelectronics Conf. (Portland, USA, 1995), p. 363

  3. L.A. Chernozatonskii, Yu.V. Gulyaev, Z.Ja. Kosakovskaya, N.I. Sinitsyn, G.V. Torgashov, Yu.F. Zakharchenko, E.A. Fedorov, V.P. Val’chuk, Chem. Phys. Lett. 233, 63 (1995)

    Google Scholar 

  4. J.-M. Bonard, J.-P. Salvetat, T. Stöckli, L. Forro, A. Châtelain, Appl. Phys. A 69, 245 (1999)

    Article  ADS  Google Scholar 

  5. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  6. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Mine, J. Appl. Phys. 90, 5308 (2001)

    Article  ADS  Google Scholar 

  7. A.A. Zakhidov, R. Nanjundaswamy, M. Zhang, S.B. Lee, A.N. Obraztsov, A. Cunningham, A.A. Zakhidov, J. Appl. Phys. 100, 044327 (2006)

    Article  Google Scholar 

  8. M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 1358 (2004)

    Article  ADS  Google Scholar 

  9. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, MA, 1961), Chapt. 1–2

  10. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  11. N.Y. Huang, J.C. She, J. Chen, S.Z. Deng, N.S. Xu, H. Bishop, S.E. Huq, L. Wang, D.Y. Zhong, E.G. Wang, D.M. Chen, Phys. Rev. Lett. 93, 075501 (2004)

    Article  ADS  Google Scholar 

  12. A. G .Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995)

    Article  ADS  Google Scholar 

  13. S.T. Purcell, P. Vincent, C. Journet, Vu Thien Binh, Phys. Rev. Lett. 88, 105502 (2002)

    Google Scholar 

  14. M. Sveningsson, R.E. Morjan, O. Nerushev, E.E.B. Campbell, Carbon 42, 1165 (2004)

    Article  Google Scholar 

  15. P. Vincent, S.T. Purcell, C. Journet, Vu Thien Binh, Phys. Rev. B 66, 075406 (2002)

    Google Scholar 

  16. P. Gustafson, Carbon 24, 169 (1986)

    Article  Google Scholar 

  17. as referenced by A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD 15, 317 (1991)

  18. G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic/Plenum Publishers, New Work, 2005), pp. 39–44

  19. Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y. Nishina, Nature 389, 554 (1997)

    Article  ADS  Google Scholar 

  20. Y. Saito, K. Hata, A. Takakura, J. Yotani, S. Uemura, Physica B 323, 30 (2002)

    Article  ADS  Google Scholar 

  21. N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, Nature 420, 393 (2002)

    Article  ADS  Google Scholar 

  22. Y. Wei, D. Weng, Y. Yang, X. Zhang, K. Jiang, L. Liu, S. Fan, Appl. Phys. Lett. 89, 063101 (2006)

    Article  Google Scholar 

  23. K.A. Dean, B.R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999)

    Article  ADS  Google Scholar 

  24. A.N. Obraztsov, A.P. Volkov, A.A. Zakhidov, D.A. Lyashenko, Yu.V. Petrushenko, O.P. Satanovskaya, Appl. Surf. Sci. 215, 214 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al.A. Zakhidov.

Additional information

PACS

79.70.+q; 61.46.Fg; 85.45.Db

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakhidov, A., Nanjundaswamy, R., Obraztsov, A. et al. Field emission of electrons by carbon nanotube twist-yarns. Appl. Phys. A 88, 593–600 (2007). https://doi.org/10.1007/s00339-007-4009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4009-6

Keywords

Navigation