Skip to main content
Log in

Effects of sintering condition on phase formation, microstructure and dielectric properties of lead titanate ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lead titanate ceramics have been prepared by two different processing methods: conventional (or single-stage) and two-stage sintering. Effects of designed sintering conditions on phase formation, densification, microstructure and dielectric properties of the ceramics were characterized via X-ray diffraction, Archimedes density measurement, scanning electron microscopy and dielectric measurement, respectively. The potentiality of a two-stage sintering technique as a simple ceramic fabrication method to obtain highly dense and pure lead titanate ceramics was demonstrated. It has been found that, under suitable two-stage sintering conditions, dense perovskite lead titanate ceramics can be successfully achieved with better dielectric properties than those of ceramics from a single-stage sintering technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)

    Google Scholar 

  2. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  3. A.J. Moulson, J.M. Herbert, Electroceramics, 2nd edn. (Wiley, Chichester, 2003)

  4. T. Takahashi, Am. Ceram. Soc. Bull. 69, 691 (1990)

    Google Scholar 

  5. L.E. Cross, Mater. Chem. Phys. 43, 108 (1996)

    Article  Google Scholar 

  6. G. Shirane, S. Hoshino, J. Phys. Soc. Japan 6, 265 (1951)

    Article  ADS  Google Scholar 

  7. G. Shirane, R. Pepinsky, B.C. Frazer, Acta Crystallogr. 9, 131 (1956)

    Article  Google Scholar 

  8. H. Takeuchi, S. Jyomura, E. Yamamoto, Y. Ito, J. Acoust. Soc. Am. 72, 1114 (1982)

    Article  ADS  Google Scholar 

  9. L.B. Kong, W. Zhu, O.K. Tan, J. Mater. Sci. Lett. 19, 1963 (2000)

    Article  Google Scholar 

  10. T. Suwannasiri, A. Safari, J. Am. Ceram. Soc. 76, 3155 (1993)

    Article  Google Scholar 

  11. T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari, H. Kageyama, J. Am. Ceram. Soc. 83, 541 (2000)

    Article  Google Scholar 

  12. J.S. Forrester, J.S. Zobec, D. Phelan, E.H. Kisi, J. Solid State Chem. 177, 3553 (2004)

    Article  ADS  Google Scholar 

  13. A. Udomporn, K. Pengpat, S. Ananta, J. Eur. Ceram. Soc. 24, 185 (2004)

    Article  Google Scholar 

  14. S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19, 2917 (1999)

    Article  Google Scholar 

  15. A. Udomporn, S. Ananta, Mater. Lett. 58, 1154 (2004)

    Article  Google Scholar 

  16. H. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

  17. R.L. Fullman, Trans. AIME 197, 447 (1953)

    Google Scholar 

  18. JCPDS-ICDD card no. 6-452, International Centre for Diffraction Data, Newtown Square, PA, 2000

  19. JCPDS-ICDD card no. 77-1971, International Centre for Diffraction Data, Newtown Square, PA, 2000

  20. J. Tartaj, C. Moure, L. Lascano, P. Durán, Mater. Res. Bull. 36, 2301 (2001)

    Article  Google Scholar 

  21. M.L. Calzada, M. Alguero, L. Pardo, J. Sol-Gel Sci. Technol. 13, 837 (1998)

    Article  Google Scholar 

  22. S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19, 629 (1999)

    Article  Google Scholar 

  23. S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19, 1873 (1999)

    Article  Google Scholar 

  24. H.C. Wang, W.A. Schulze, J. Am. Ceram. Soc. 73, 825 (1990)

    Article  Google Scholar 

  25. S.M. Gupta, A.R. Kulkarni, J. Mater. Res. 10, 953 (1995)

    ADS  Google Scholar 

  26. T. Takeuchi, M. Takahashi, K. Ado, N. Tamari, K. Ichikawa, S. Miyamoto, M. Kawahara, M. Tabuchi, H. Kageyama, J. Am. Ceram. Soc. 84, 2521 (2001)

    Article  Google Scholar 

  27. Y. Matsuo, H. Sasaki, J. Am. Ceram. Soc. 49, 229 (1966)

    Article  Google Scholar 

  28. S.R. Dhage, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, B.D. Sarwade, D.K. Date, Mater. Lett. 56, 564 (2002)

    Google Scholar 

  29. S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Phys. Rev. B 52, 13177 (1995)

    Article  ADS  Google Scholar 

  30. M. Villegas, A.C. Caballero, M. Kosec, C. Moure, P. Duran, J.F. Fernandez, J. Mater. Res. 14, 891 (1999)

    ADS  Google Scholar 

  31. A. Yamaji, Y. Enomoto, K. Kinoshita, T. Murakami, J. Am. Ceram. Soc. 60, 97 (1977)

    Article  Google Scholar 

  32. B.M. Jin, J. Kim, S.C. Kim, Appl. Phys. A 65, 53 (1997)

    Article  ADS  Google Scholar 

  33. W. Cao, C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996)

    Article  ADS  Google Scholar 

  34. S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, J. Am. Ceram. Soc. 67, 311 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ananta.

Additional information

PACS

77.22.-d; 77.84.-s; 77.84.Dy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongmaneerung, R., Yimnirun, R. & Ananta, S. Effects of sintering condition on phase formation, microstructure and dielectric properties of lead titanate ceramics. Appl. Phys. A 86, 249–255 (2007). https://doi.org/10.1007/s00339-006-3753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3753-3

Keywords

Navigation