Skip to main content
Log in

Comparison of the optical properties of as-grown ensembles and single ZnO nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By use of micro-photoluminescence spectroscopy we analyze and compare the optical properties of individual zincoxide nanowires, with diameters 90 nm<d<620 nm, and of the as-grown ensemble. After special preparation techniques individual nanowires of different morphologies and crystalline qualities are observed which possess distinctively different near band-edge excitonic features. We show that the spectral shape of these excitonic emission lines correlates with the morphology of the nanowires. Our results clearly show that for decreasing wire diameter, distinct surface-related spectral features strongly contribute to the optical properties of individual ZnO nanowires. Finally, the temperature dependence of the near band-edge emission is analyzed. The results obtained from individual wires provide information about the homogeneity of the optical properties of the wires in the as-grown ensembles, and show that easily performed ensemble measurements indeed reflect the properties of typical individual, single nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnston, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  3. C. Klingshirn, Semiconductor Optics, 2nd ed. (Springer, Berlin Heidelberg, 2005)

  4. H. Priller, J. Brückner, Th. Gruber, C. Klingshirn, H. Kalt, A. Waag, H.J. Ko, T. Yao, Phys. Stat. Solidi B 241, 587 (2004)

    Article  Google Scholar 

  5. D.J. Sirbuly, M. Law, H. Yan, P. Yang, J. Phys. Chem. B 109, 15190 (2005)

    Article  Google Scholar 

  6. J.K. Song, J.M. Szarko, S.R. Leone, S. Li, Y. Zhao, J. Phys. Chem. B 109, 15749 (2005)

    Article  Google Scholar 

  7. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    PubMed  Google Scholar 

  8. G.C. Yi, C. Wang, W.I. Park, Semicond. Sci. Technol. 20, S22 (2005)

    Article  Google Scholar 

  9. J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nature Mater. 1, 106 (2002)

    Article  Google Scholar 

  10. C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, H. Kalt, Proc. Internat. School of Atomic and Molecular Spectroscopy, a NATO Advcanced Study Institute, 22nd Course: New Developments in Optics and related Fields, ed. by B. Di Bartolo, O. Forte, in press (2005)

  11. L. Samuelson, Mater. Today 6, 22 (2003)

    Article  Google Scholar 

  12. T. Yatsui, T. Kawazoe, T. Shimizu, Y. Yamamoto, M. Ueda, M. Kourogi, M. Ohtsu, G.H. Lee, Appl. Phys. Lett. 80, 1444 (2002)

    Article  Google Scholar 

  13. Z.L. Wang, Mater. Today 7, 26 (2004)

    Article  Google Scholar 

  14. T. Nobis, E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004)

    Article  PubMed  Google Scholar 

  15. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yao, Appl. Phys. Lett. 81, 1231 (2002)

    Article  Google Scholar 

  16. H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, M. Zacharias, Nanotechnology 16, 913 (2005)

    Article  Google Scholar 

  17. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, Appl. Phys. Lett. 84, 5359 (2004)

    Article  Google Scholar 

  18. B. Cheng, Y. Xiao, G. Wu, L. Zhang, Adv. Funct. Mater. 14, 913 (2004)

    Article  Google Scholar 

  19. R. Kling, C. Kirchner, Th. Gruber, F. Reuss, A. Waag, Nanotechnology 15, 1043 (2004)

    Article  Google Scholar 

  20. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Solidi B 241, 231 (2004)

    Article  Google Scholar 

  21. A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Phys. Rev. B 70 195207 (2004)

    Google Scholar 

  22. Y. Varshni, Physica 34, 149 (1967)

    Article  Google Scholar 

  23. C. Klingshirn, Phys. Stat. Solidi B 71, 547 (1975)

    Google Scholar 

  24. V.V. Travnikov, A. Freiberg, S.F. Savikhin, J. Luminesc. 47, 107 (1990)

    Article  Google Scholar 

  25. S. Savikhin, A. Freiberg, J. Luminesc. 55, 1 (1993)

    Article  Google Scholar 

  26. J. Grabowska, A. Meaney, K.K. Nanda, J.-P. Mosnier, M.O. Henry, J.-R. Duclère, E. McGlynn, Phys. Rev. B 71, 115439 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wischmeier.

Additional information

PACS

78.55.-m; 78.55.Et; 78.67.-n; 78.67.Bf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wischmeier, L., Voss, T., Börner, S. et al. Comparison of the optical properties of as-grown ensembles and single ZnO nanowires. Appl. Phys. A 84, 111–116 (2006). https://doi.org/10.1007/s00339-006-3589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3589-x

Keywords

Navigation