Skip to main content
Log in

Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A cavity processed by a tightly focused femtosecond laser pulse is surrounded by a ring-shaped protrusion, debris, and small droplets. In order to reduce these undesired damages, we propose processing with a coating of transparent material on a target material. PMMA (poly-methyl methacrylate) with the thickness that its surface is not ablated by a single pulse irradiation reduces dissolution and vaporization caused by the interaction between a high-density hot vapor plume and the target material. Furthermore, the material at the target surface does not escape freely due to the coating layer. As a result, a submicrometer-sized cavity is produced with a reduction of debris and a smaller thermal-destruction area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du D, Liu X, Korn G, Squier J, Mourou G (1994) Appl. Phys. Lett. 64:3071

    Article  ADS  Google Scholar 

  2. Kumagai H, Midorikawa K, Toyoda K, Nakamura S, Okamoto T, Obara M (1994) Appl. Phys. Lett. 65:1850

    Article  ADS  Google Scholar 

  3. Glezer EN, Mazur E (1997) Appl. Phys. Lett. 71:882

    Article  ADS  Google Scholar 

  4. Rudolph P, Bonse J, Krüger J, Kautek W (1999) Appl. Phys. A 69:763

    Article  ADS  Google Scholar 

  5. Schaffer CB, Brodeur A, Garcia JF, Mazur E (2001) Opt. Lett. 26:93

    Article  ADS  Google Scholar 

  6. Juodkazis S, Matsuo S, Misawa H, Mizeikis V, Marcinkevicius A, Sunm H-B, Tokuda Y, Takahashi M, Yoko T, Nishii J (2002) Appl. Surf. Sci. 197:705

    Article  ADS  Google Scholar 

  7. Luo L, Li C, Wang D, Yang H, Jiang H, Gong Q (2002) Appl. Phys. A 74:497

    Article  ADS  Google Scholar 

  8. Borowiec A, Mackenzie M, Weathyrly GC, Haugen HK (2003) Appl. Phys. A 76:201

    Article  ADS  Google Scholar 

  9. Schaffer CB, Jamison AO, Mazur E (2004) Appl. Phys. Lett. 84:1441

    Article  ADS  Google Scholar 

  10. Hayasaki Y, Takagi H, Takita A, Yamamoto H, Nishida N, Misawa H (2004) Jpn. J. Appl. Phys. 43:8089

    Article  ADS  Google Scholar 

  11. Yamasaki K, Juodkazis S, Watanabe M, Sun H-B, Matsuo S, Misawa H (2000) Appl. Phys. Lett. 76:1000

    Article  ADS  Google Scholar 

  12. Takita A, Yamamoto H, Hayasaki Y, Nishida N, Misawa H (2005) Opt. Express 13:4560

    Article  ADS  Google Scholar 

  13. Miura K, Qiu J, Inouye H, Mitsuyum T, Hirao K (1997) Appl. Phys. Lett. 71:3329

    Article  ADS  Google Scholar 

  14. Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J, Jiang Y (2002) Appl. Phys. Lett. 80:1508

    Article  ADS  Google Scholar 

  15. Watanabe W, Kuroda D, Itoh K, Nishii J (2002) Opt. Express 10:978

    Article  ADS  Google Scholar 

  16. Sun H-B, Matsuo S, Misawa H (1999) Appl. Phys. Lett. 74:768

    Article  Google Scholar 

  17. Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Appl. Phys. Lett. 79:725

    Article  ADS  Google Scholar 

  18. Kim H, Postlwaite JC, Zyung T, Dlott DD (1989) Appl. Phys. Lett. 54:2274

    Article  ADS  Google Scholar 

  19. Herrmann RFW, Gerlach J, Campbell EEB (1998) Appl. Phys. A 66:35

    Article  ADS  Google Scholar 

  20. Chichkov BN, Momma C, Notle S, von Alvenslben F, Tünnermann A (1996) Appl. Phys. A 63:109

    Article  ADS  Google Scholar 

  21. Zozulya AA, Diddams SA (1999) Opt. Express 4:336

    Article  ADS  Google Scholar 

  22. Korte F, Adams S, Egbert A, Fallnich C, Ostendorf A, Nolte S, Will M, Ruske J-P, Chichkov BN, Tünnermann A (2000) Opt. Express 7:41

    Article  ADS  Google Scholar 

  23. Wu Z, Jiang H, Zhang Z, Sun Q, Yang H, Gong Q (2002) Opt. Express 10:1244

    Article  ADS  Google Scholar 

  24. Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkon BN (2003) Appl. Phys. A 77:229

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hayasaki.

Additional information

PACS

44.10.+i; 61.80.Ba; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, D., Takita, A., Hayasaki, Y. et al. Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating. Appl. Phys. A 82, 523–527 (2006). https://doi.org/10.1007/s00339-005-3422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3422-y

Keywords

Navigation