Skip to main content
Log in

Low-dimensional electronic states at silicon surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Self-assembled atomic chains can be triggered at stepped Si(111) surfaces by adding sub-monolayer amounts of metals, such as gold, silver, platinum, alkali metals, alkaline earths, and rare earths. A common feature of all these structures is the honeycomb chain, a graphitic strip of Si atoms at the step edge that is lattice matched in the direction parallel to the edge but completely mismatched perpendicular to it. This honeycomb chain drives one-dimensional surface reconstructions even on the flat Si(111) surface, breaking its three-fold symmetry. Particularly interesting are metallic chain structures, such as those induced by gold. The Au atoms are locked rigidly to the Si substrate but the electrons near the Fermi level completely decouple from the substrate because they lie in the band gap of silicon. The electronic structure of one-dimensional electrons is predicted to be qualitatively different from that of higher dimensions, since electrons cannot avoid each other when moving along the same line. The single-electron picture has to be abandoned, making way for collective excitations, such as spinons and holons, where the spins and charges of electrons become separated. Although such excitations have yet to be confirmed definitively, the band structure seen in angle-resoled photoemission exhibits a variety of unusual features, such as a fractional electron count and a doublet of nearly half-filled bands. Chains of tunable spins can be created with rare earths. The dimensionality can be controlled by adjusting the step spacing with intra- and inter-chain coupling ratios from 10:1 to >70:1. Thus, metal-induced chain structures on stepped silicon provide a versatile class of low-dimensional materials for approaching the one-dimensional limit and exploring the exotic electronic states predicted for one dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieb EH, Mattis DC (eds) (1966) Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles. Academic, New York

    Google Scholar 

  2. Giamarchi T (2004) Quantum Physics in One Dimension. Oxford University Press, New York

    MATH  Google Scholar 

  3. Gruner G (1994) Density Waves in Solids. Addison-Wesley, Reading, MA

    Google Scholar 

  4. Hausler W, Kecke L, MacDonald AH (2002) Phys Rev B 65:085104

    Article  Google Scholar 

  5. Schonhammer K (2003) in Strong Interactions in Low Dimensions. Baeriswyl D, Degiorgi L (eds) Kluwer Academic, Dordrecht, Chap 1

  6. Auslaender OM, Steinberg H, Yacoby A, Tserkovnyak Y, Halperin BI, Baldwin KW, Pfeiffer LN, West KW (2005) Science 308:88

    Article  ADS  Google Scholar 

  7. Creffield CE, Hausler W, MacDonald AH (2001) Europhys Lett 53:221

    Article  ADS  Google Scholar 

  8. Claessen R, Sing M, Schwingenschlogl U, Blaha P, Dressel M, Jacobsen CS (2002) Phys Rev Lett 88:096402

    Article  ADS  Google Scholar 

  9. Sing M, Schwingenschlogl U, Claessen R, Blaha P, Carmelo JMP, Martelo LM, Sacramento PD, Dressel M, Jacobsen CS (2003) Phys Rev B 68:125111

    Article  ADS  Google Scholar 

  10. Zacher MG, Arrigoni E, Hanke W, Schrieffer JR (1998) Phys Rev B 57:6370

    Article  MathSciNet  ADS  Google Scholar 

  11. Ohnishi H, Kondo Y, Takayanagi K (1998) Nature 395:780

    Article  ADS  Google Scholar 

  12. Mugarza A, Mascaraque A, Perez-Dieste V, Repain V, Rousset S, de Abajo FJG, Ortega JE (2001) Phys Rev Lett 87:107601

    Article  ADS  Google Scholar 

  13. Mugarza A, Ortega JE (2003) J Phys Condens Matter 15:S3281

    Article  ADS  Google Scholar 

  14. Rousset S, Repain V, Baudot G, Garreau Y, Lecoeur J (2003) J Phys Condens Matter 15:S3363

    Article  ADS  Google Scholar 

  15. Goldberg JL, Wang XS, Wei J, Bartelt NC, Williams ED (1991) J Vac Sci Technol A 9:1868

    Article  ADS  Google Scholar 

  16. Lin JL, Petrovykh DY, Viernow J, Men FK, Seo DJ, Himpsel FJ (1998) J Appl Phys 84:255

    Article  ADS  Google Scholar 

  17. Viernow J, Lin JL, Petrovykh DY, Leibsle FM, Men FK, Himpsel FJ (1998) Appl Phys Lett 72:948

    Article  ADS  Google Scholar 

  18. Wei J, Wang XS, Bartelt NC, Williams ED, Tung RT (1991) J Chem Phys 94:8384

    Article  ADS  Google Scholar 

  19. Williams ED, Phaneuf RJ, Wei J, Bartelt NC, Einstein TL (1993) Surf Sci 294:219

    Article  ADS  Google Scholar 

  20. Crain JN, Kirakosian A, Altmann KN, Bromberger C, Erwin SC, McChesney JL, Lin JL, Himpsel FJ (2003) Phys Rev Lett 90:176805

    Article  ADS  Google Scholar 

  21. Crain JN, McChesney JL, Zheng F, Gallagher MC, Snijders PC, Bissen M, Gundelach C, Erwin SC, Himpsel FJ (2004) Phys Rev B 69:125401

    Article  ADS  Google Scholar 

  22. Chashechkina EI, Chaikin PM (1999) Synth Met 103:2176

    Article  Google Scholar 

  23. Clarke DG, Strong SP, Chaikin PM, Chashechkina EI (1998) Science 279:2071

    Article  Google Scholar 

  24. Danner G, Kang W, Chaikin PM (1994) Physica B 201:442

    Article  ADS  Google Scholar 

  25. Altmann KN, Crain JN, Kirakosian A, Lin JL, Petrovykh DY, Himpsel FJ, Losio R (2001) Phys Rev B 64:035406

    Article  Google Scholar 

  26. Erwin SC (2003) Phys Rev Lett 91:206101

    Article  ADS  Google Scholar 

  27. McChesney JL, Crain JN, Perez-Dieste V, Zheng F, Gallagher MC, Bissen M, Gundelach C, Himpsel FJ (2004) Phys Rev B 70:195430

    Article  ADS  Google Scholar 

  28. Riikonen S, Sanchez-Portal D (2005) Phys Rev B 71:235423

    Article  Google Scholar 

  29. Jalochowski M, Strozak M, Zdyb R (1997) Vacuum 48:273

    Article  ADS  Google Scholar 

  30. Nogami J, Park SI, Quate CF (1987) Phys Rev B 36:6221

    Article  ADS  Google Scholar 

  31. Yeom HW, Takeda S, Rotenberg E, Matsuda I, Horikoshi K, Schaefer J, Lee CM, Kevan SD, Ohta T, Nagao T, Hasegawa S (1999) Phys Rev Lett 82:4898

    Article  ADS  Google Scholar 

  32. Ahn JR, Byun JH, Koh H, Rotenberg E, Kevan SD, Yeom HW (2004) Phys Rev Lett 93:106401

    Article  ADS  Google Scholar 

  33. Lopez-Lozano X, Krivosheeva A, Stekolnikov AA, Meza-Montes L, Noguez C, Furthmüller J, Bechstedt F (2005) to be published

  34. Bromberger C, Crain JN, Altmann KN, Paggel JJ, Himpsel FJ, Fick D (2003) Phys Rev B 68:075320

    Article  Google Scholar 

  35. Petrovykh DY, Altmann KN, Lin JL, Himpsel FJ, Leibsle FM (2002) Surf Sci 512:269

    Article  ADS  Google Scholar 

  36. Himpsel FJ, Altmann KN, Bennewitz R, Crain JN, Kirakosian A, Lin JL, McChesney JL (2001) J Phys Condens Matter 13:11097

    Article  ADS  Google Scholar 

  37. Bauer E (1991) Surf Sci 250:L379

    Article  ADS  Google Scholar 

  38. Himpsel FJ, McChesney JL, Crain JN, Kirakosian A, Perez-Dieste V, Abbott NL, Luk YY, Nealey PF, Petrovykh DY (2004) J Phys Chem B 108:14484

    Article  Google Scholar 

  39. Kirakosian A, McChesney JL, Bennewitz R, Crain JN, Lin JL, Himpsel FJ (2002) Surf Sci 498:L109

    Article  Google Scholar 

  40. McChesney JL, Crain JN, Himpsel FJ, Bennewitz R (2005) submitted

  41. Yang YN, Fu ES, Williams ED (1996) Surf Sci 356:101

    Article  ADS  Google Scholar 

  42. Erwin SC, Weitering HH (1998) Phys Rev Lett 81:2296

    Article  ADS  Google Scholar 

  43. Robinson IK, Bennett PA, Himpsel FJ (2002) Phys Rev Lett 88:096104

    Article  ADS  Google Scholar 

  44. Sanchez-Portal D, Martin RM (2003) Surf Sci 532:655

    Article  ADS  Google Scholar 

  45. Sanchez-Portal D, Riikonen S, Martin RM (2004) Phys Rev Lett 93:146803

    Article  ADS  Google Scholar 

  46. Riikonen S, Sanchez-Portal D (2005) Nanotechnology 16:S218

    Article  ADS  Google Scholar 

  47. Baski AA, Saoud KM (2001) J Clust Sci 12:527

    Article  Google Scholar 

  48. Kevan SD (ed) (1992) Angle-resolved Photoemission. Elsevier, Amsterdam

    Google Scholar 

  49. Himpsel FJ (1983) Adv Phys 32:1

    Article  ADS  Google Scholar 

  50. Kanagawa T, Hobara R, Matsuda I, Tanikawa T, Natori A, Hasegawa S (2003) Phys Rev Lett 91:036805

    Article  ADS  Google Scholar 

  51. Okino H, Hobara R, Matsuda I, Kanagawa T, Hasegawa S, Okabayashi J, Toyoda S, Oshima M, Ono K (2004) Phys Rev B 70:113404

    Article  Google Scholar 

  52. Tanikawa T, Matsuda I, Kanagawa T, Hasegawa S (2004) Phys Rev Lett 93:016801

    Article  ADS  Google Scholar 

  53. Crain JN, Altmann KN, Bromberger C, Himpsel FJ (2002) Phys Rev B 66:205302

    Article  ADS  Google Scholar 

  54. Blagoev KB, Bedell KS (1997) Phys Rev Lett 79:1106

    Article  ADS  Google Scholar 

  55. Segovia P, Purdie D, Hengsberger M, Baer Y (1999) Nature 402:504

    Article  ADS  Google Scholar 

  56. Losio R, Altmann KN, Kirakosian A, Lin JL, Petrovykh DY, Himpsel FJ (2001) Phys Rev Lett 86:4632

    Article  ADS  Google Scholar 

  57. Ahn JR, Yeom HW, Yoon HS, Lyo IW (2003) Phys Rev Lett 91:196403

    Article  ADS  Google Scholar 

  58. Yeom HW et al. (2005) Phys Rev B, in press

  59. LaShell S, McDougall BA, Jensen E (1996) Phys Rev Lett 77:3419

    Article  ADS  Google Scholar 

  60. Reinert F, Nicolay G, Schmidt S, Ehm D, Hufner S (2001) Phys Rev B 63:033407

    Article  Google Scholar 

  61. Hausler W (2001) Phys Rev B 63:121310(R)

    Article  ADS  Google Scholar 

  62. Yoon HS, Park SJ, Lee JE, Whang CN, Lyo IW (2004) Phys Rev Lett 92:096801

    Article  ADS  Google Scholar 

  63. Kirakosian A, Crain JN, Lin JL, McChesney JL, Petrovykh DY, Himpsel FJ, Bennewitz R (2003) Surf Sci 532:928

    Article  ADS  Google Scholar 

  64. Kirakosian A, Bennewitz R, Himpsel FJ, Bruch LW (2003) Phys Rev B 67:205412

    Article  ADS  Google Scholar 

  65. Bennewitz R, Crain JN, Kirakosian A, Lin JL, McChesney JL, Petrovykh DY, Himpsel FJ (2002) Nanotechnology 13:499

    Article  ADS  Google Scholar 

  66. Crain JN, Pierce DT (2005) Science 307:703

    Article  ADS  Google Scholar 

  67. Flores F, Ortega J, Perez R (1999) Surf Rev Lett 6:411

    Article  ADS  Google Scholar 

  68. Ramachandran V, Feenstra RM (1999) Phys Rev Lett 82:1000

    Article  ADS  Google Scholar 

  69. Forbeaux I, Themlin JM, Langlais V, Yu LM, Belkhir H, Debever JM (1998) Surf Rev Lett 5:193

    Article  ADS  Google Scholar 

  70. Themlin JM, Forbeaux I, Langlais V, Belkhir H, Debever JM (1997) Europhys Lett 39:61

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J. Himpsel.

Additional information

PACS

73.20.At; 71.10.Pm; 79.60.Jv; 81.07.Vb; 73.21.Hb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crain, J., Himpsel, F. Low-dimensional electronic states at silicon surfaces. Appl. Phys. A 82, 431–438 (2006). https://doi.org/10.1007/s00339-005-3365-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3365-3

Keywords

Navigation