Skip to main content
Log in

Nanoelectronic architectures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Configurable crossbars are the easiest computational structures to fabricate at the nanoscale. By creating multiple types of crossbars and assembling them into larger structures, we may implement general computation. Architectures for diode-based and transistor-based logic are presented, along with latching mechanisms. We present simulation results from defect-tolerance studies on two applications (a 3-bit adder and a 4-bit microprocessor) mapped onto defective, nanoelectronic fabrics, and outline strategies for fault tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Almukhaizim, Y. Makris: ‘Fault Tolerant Design of Combinational and Sequential Logic Based on a Parity Check Code’. In: Proc. 18th IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems, 3–5 November 2003, Boston, MA, USA, pp. 563–570

  2. L. Anghel, D. Alexandrescu, M. Nicolaidis: ‘Evaluation of a Soft Error Tolerance Technique Based on Time and/or Space Redundancy’. In: Proc. 13th Symp. Integrated Circuits and Systems Design, 18–24 September 2000, Manaus, Brazil, pp. 237–242

  3. J. Berger: Inf. Control 4, 68 (1961)

    Article  Google Scholar 

  4. D. Bessot, R. Velazco: ‘Design of SEU-hardened CMOS Memory Cells: the HIT Cell’. In: Second Eur. Conf. Radiation and its Effects on Components and Systems (RADECS 93), 13–16 September 1993, Saint-Malo, France, pp. 563–570

  5. T. Calin, M. Nicolaidis, R. Velazco: IEEE Trans. Nucl. Sci. 43, 2874 (1996)

    Article  ADS  Google Scholar 

  6. Y. Chen, G. Jung, D. Ohlberg, X. Li, D. Stewart, J. Jeppesen, K. Nielsen, J. Stoddart, R. Williams: Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  7. Y. Chen, R.S. Williams: Configurable nanoscale crossbar electronic circuits made by electrochemical reaction, US Patent No. 6 518 156 (2003)

  8. C. Collier, E. Wong, M. Belohradsky, F. Raymo, J. Stoddart, P. Kuekes, R. Williams, J. Heath: Science 285, 391 (1999)

    Article  Google Scholar 

  9. B. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider: ‘Defect Tolerance on the Teramac Custom Computer’. In: Proc. 1997 IEEE Symp. FPGA’s from Custom Computing Machines (FCCM ’97), Napa Valley, CA, USA, pp. 116–123

  10. D. Das, N. Touba: J. Electron. Test.: Theory Appl. (JETTA), 15, 145 (1999)

    Article  Google Scholar 

  11. A. DeHon: IEEE Trans. Nanotechnol. 2, 23 (2003)

    Article  ADS  Google Scholar 

  12. P. Drineas, Y. Makris: ‘Non-Intrusive Design of Concurrently Self-Testable FSMs’. In: Proc. 11th Asian Test Symp. (ATS’02), Guam, USA, 18–20 November 2002, pp. 33–38

  13. P. Drineas, Y. Makris: ‘Non-Intrusive Concurrent Error Detection in FSMs through State/Output Compaction and Monitoring via Parity Trees’. In: Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE ’03), Messe Munich, Germany, 3–7 March 2003, pp. 1164–1165

  14. J. Gaisler: ‘Concurrent Error-detection and Modular Fault Tolerance in a 32-bit Processing Core for Embedded Space Flight Applications’. In: Proc. 24th Annu. Int. Symp. Fault-Tolerant Computing, Austin, Texas, 15–17 June 1994, pp. 128–130

  15. S. Goldstein, M. Budiu: ‘NanoFabrics: Spatial Computing Using Molecular Electronics’. In: Proc. 28th Int. Symp. Computer Architecture, ISCA, 2001, 30 June–4 July 2001, Goteborg, Sweden, pp. 178–191

  16. L.J. Guo, P.R. Krauss, S.Y. Chou: Appl. Phys. Lett. 71, 1881 (1997)

    Article  ADS  Google Scholar 

  17. C. Hadjicostis: Coding Approaches to Fault Tolerance in Combinational and Dynamic Systems (Kluwer Academic Publishers, Boston, Dordrecht, London 2002)

  18. S. Hauck: Proc. IEEE 83, 69 (1995)

    Article  Google Scholar 

  19. J. Heath, P. Kuekes, G. Snider, R.S. Williams: Science 280, 1716 (1998)

    Article  Google Scholar 

  20. J. Heath, M. Ratner: Phys. Today, May, 43 (2003)

  21. T. Hogg, G. Snider: Defect-tolerant logic with nanoscale crossbar circuits, submitted to IEEE Trans. Nanotechnol.

  22. Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber: Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  23. G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg, D.L. Olynick, Y. Chen, W.M. Tong, R.S. Williams: Appl. Phys. 78, 1169 (2004)

    Article  Google Scholar 

  24. G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg, D.L. Olynick, Y. Chen, W.M. Tong, R.S. Williams: Nano Lett. 4, 1225 (2004)

    Article  ADS  Google Scholar 

  25. P.J. Kuekes, R.S. Williams, J.R. Heath: Molecular wire crossbar memory, US Patent No. 6 128 214 (2000)

  26. P. Kuekes, R.S. Williams: Demultiplexer for a molecular wire crossbar network, US Patent No. 6 256 767 (2001)

  27. P.J. Kuekes, R.S. Williams, J.R. Heath: Molecular-wire crossbar interconnect (MWCI) for signal routing and communications, US Patent No. 6 314 019 (2001)

  28. P. Kuekes: Molecular crossbar latch, US Patent No. 6 586 965 (2003)

  29. P.J. Kuekes, R.S. Williams: Molecular wire transistor (MWT), US Patent No. 6 559 468 (2003)

  30. P. Lala: Fault Tolerant and Fault Testable Hardware Design (Prentice-Hall, London 1985)

  31. B. Landman, R. Russo: IEEE Trans. Comput. 20, 1469 (1971)

    Article  Google Scholar 

  32. C. Metra, S. Di Francescantonio, M. Omana: ‘Automatic Modification of Sequential Circuits for Self-Checking Implementation’. In: Proc. 18th IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT ’03), 03–05 November 2003, Boston, MA, USA

  33. Y. Luo, C. Collier, J. Jeppesen, K. Nielsen, E. Delonno, G. Ho, J. Perkins, H. Tseng, T. Yamamoto, J. Stoddart, J. Heath: Chem. Phys. Chem. 3, 519 (2002)

    Google Scholar 

  34. M. Mishra, S. Goldstein: ‘Defect Tolerance at the End of the Roadmap’. In: Proc. Int. Test Conf. 2003 (ITC 2003), 30 September–2 October 2003, Vol. 1, Charlotte, NC, USA, pp. 1201–1210

  35. S. Mitra, E. McCluskey: ‘Which Concurrent Error Detection Scheme to Choose?’. In: Proc. Int. Test Conf. 2000, 3–5 October 2000, Atlantic City, NJ, USA, pp. 985–994

  36. S. Mitra, E. McCluskey: ‘Design Diversity for Concurrent Error Detection in Sequential Logic Circuits’. In: Proc. 19th IEEE VLSI Test Symp. (VTS 2001), 29 April–3 May 2001, Marina Del Rey, CA, USA, pp. 178–183

  37. M. Nicolaidis: ‘Time Redundancy Based Soft-error Tolerance to Rescue Nanometer Technologies’. In: Proc. 17th IEEE VLSI Test Symp., 25–29 April 1999, San Diego, CA, USA pp. 86–94

  38. P. Packen: Science 24, 2079 (1999)

    Article  Google Scholar 

  39. R. Parekhji, G. Venkatesh, S. Sherlekar: ‘Concurrent Error Detection Using Monitoring Machines’. In: IEEE Design and Test of Computers, Fall 1995, Vol. 12, No. 3, pp. 24–32

  40. J. Patel, L. Fung: IEEE Trans. Comput. C 31, 589 (1982)

    Article  Google Scholar 

  41. S. Piestrak: ‘Limitations of Design Methods for Self-Checking Synchronous Sequential Machines’. FastAbstract 29th Int. Symp. Fault-Tolerant Computing, Madison, Wisconsin, 15–18 June 1999, Session 6C: Fast Abstracts I, Madison, WI, USA

  42. L. Rockett: Science 35, 1682 (1988)

    Google Scholar 

  43. L. Rockett: Single-event upset hardened reconfigurable bi-stable CMOS latch, US Patent No. 6 369 630 (2002)

  44. E. Rotenberg: ‘AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors’. In: Proc. 29th Fault-Tolerant Computing Symposium, 15–18 June 1999, Madison, WI, USA, pp. 84–91

  45. A. Sadek, K. Nikolic, M. Forshaw: Nanotechnology 15, 192 (2004)

    Article  ADS  Google Scholar 

  46. J. Shedletsky: IEEE Trans. Comput., February, 106 (1978)

  47. G. Snider, P. Kuekes, R.S. Williams: Nanotechnology 15, 881 (2004)

    Article  ADS  Google Scholar 

  48. G. Snider, W. Robinette: Crossbar demultiplexers for nanoelectronics based on N-hot codes, to appear in IEEE Trans. Nanotechnol.

  49. G. Snider, P. Kuekes: Nano state machines using hysteretic resistors and diode crossbars, in preparation

  50. G. Snider, P. Kuekes, R.S. Williams: Configurable molecular switch array, US Patent Application Publication No. US 2004/0041617 A1, 4 March 2004

  51. M. Stan, P. Franzon, S. Goldstein, J. Lach, M. Ziegler: Proc. IEEE, November, 1940 (2003)

  52. D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams, J.O. Jeppesen, K.A. Nielson, J.F. Stoddart: Nano Lett. 4, 133 (2004)

    Article  ADS  Google Scholar 

  53. J. von Neumann: ‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’. In: Automata Studies (Princeton University Press 1956) pp. 43–98

  54. J. Wakerly: Error Detecting Codes, Self-Checking Circuits and Applications (Elsevier/North-Holland, New York 1978)

  55. S. Whitaker, J. Canaris, K. Liu: Nucl. Sci. 38, 1471 (1991)

    Article  Google Scholar 

  56. K. Wu, R. Karri: IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 21(9), 1077 (2002)

    Google Scholar 

  57. C. Zeng, N. Saxena, E. McCluskey: ‘Finite State Machine Synthesis with Concurrent Error Detection’. In: Proc. ITC Int. Test Conf., 27–30 September 1999, Atlantic City, NJ, USA, pp. 672–679

  58. Z. Zhong, D. Wang, Y. Cui, M. Bockrath, C. Lieber: Science 302, 137 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Snider.

Additional information

PACS

85.35.-p; 85.40.Bh; 85.40.Qx; 85.65.+h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, G., Kuekes, P., Hogg, T. et al. Nanoelectronic architectures. Appl. Phys. A 80, 1183–1195 (2005). https://doi.org/10.1007/s00339-004-3154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3154-4

Keywords

Navigation